单例模式
核心作用
- 保证一个类中只有一个实例,并且提供一个访问该实例的全局访问点
- 项目中的配置文件,一般也只有一个对象,没必要每次都都new一遍,配置文件不容易改变
- Spring中bean的加载,以及控制器对象也是单例模式
单例模式五种实现方式
- 饿汗式:编程安全,调用效率高。但是不能延时加载
- 懒汉式:线程安全,调用效率不高,但是可以延时加载
- 双重检测锁式(由于JVM底层内部模型原因,偶尔出现问题,不建议使用)
- 静态内部类式:线程安全,调用效率高,但是可以延时加载
- 枚举单例:线程安全,调用效率高,不能延时加载
代码
饿汗式 :线程安全的,类初始化时立即加载,天然线程安全
public class SingleEHan {
private static SingleEHan instance = new SingleEHan(); //类实例化,立即加载 //,天然线程安全
private SingleEHan(){} //单例模式构造器方法必须私有
public static SingleEHan getInstance(){ //不需要同步,显然调用的效率高
return instance;
}
}
Compiled from "SingleEHan.java"
public class com.xhd.admin.web.SingleEHan {
public static com.xhd.admin.web.SingleEHan getInstance();
Code:
0: getstatic #2 // Field instance:Lcom/xhd/admin/web/SingleEHan;
3: areturn
static {};
Code:
0: new #3 // class com/xhd/admin/web/SingleEHan
3: dup
4: invokespecial #4 // Method "<init>":()V
7: putstatic #2 // Field instance:Lcom/xhd/admin/web/SingleEHan;
10: return
}
懒汉式加载 资源利用效率高,但调用效率低
public class SingleLanHan {
private static SingleLanHan singleLanHan;
private SingleLanHan(){
if(singleLanHan != null){ //防止反射
throw new RuntimeException();
}
}
// synchronized 调用效率低
public static synchronized SingleLanHan getSingleLanHan(){
if(singleLanHan == null){
singleLanHan = new SingleLanHan();
}
return singleLanHan;
}
}
静态内部类实现方式:,线程安全调用效率高 懒加载
public class SingleStatic {
private SingleStatic() {}
//静态内部类
private static class SingleStaticInstance{
private static final SingleStatic instance
= new SingleStatic();
}
public static SingleStatic getInstance(){
return SingleStaticInstance.instance;
}
}
Compiled from "SingleStatic.java"
public class com.xhd.admin.web.SingleStatic {
public static com.xhd.admin.web.SingleStatic getInstance();
Code:
0: invokestatic #3
// Method com/xhd/admin/web/SingleStatic$SingleStaticInstance.access$100:()Lcom/xhd/admin/web/SingleStatic;
3: areturn
com.xhd.admin.web.SingleStatic(com.xhd.admin.web.SingleStatic$1);
Code:
0: aload_0
1: invokespecial #1 // Method "<init>":()V
4: return
}
枚举:天然线程安全,天然实例唯一
public enum SingleEnum {
//这个枚举元素,本身就是单例对象
INSTANCE;
//添加自己需要的操作
public void singletonOperation(){
}
}
双重检查锁实现单例模式
public class SingleDoubleCheck {
private static SingleDoubleCheck singleDoubleCheck = null;
private SingleDoubleCheck(){}
public static SingleDoubleCheck getSingleDoubleCheck(){
if(singleDoubleCheck == null){
SingleDoubleCheck sc ;
synchronized (SingleDoubleCheck.class){
sc = singleDoubleCheck;
if(sc == null){
sc = new SingleDoubleCheck();
}
}
singleDoubleCheck = sc;
}
return singleDoubleCheck;
}
}
多线程环境下测试用CountDownLatch
- 同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待
- countDown() 当前线程调此方法,则统计减一,建议放在finally里执行
- await方法:调用此方法会一直阻塞当前线程,直到计数器的值为0
public class ClientTest {
public static void main(String[] args) throws InterruptedException {
long start = System.currentTimeMillis();
int threadNum = 10;
final CountDownLatch countDownLatch = new CountDownLatch(threadNum);
for(int j = 0; j< threadNum;j++){
new Thread(new Runnable() {
@Override
public void run() {
for(int i = 0;i<1000000;i++){
Object o = SingleEHan.getInstance(); //换方式在此地方
countDownLatch.countDown();
}
}
}).start();
}
countDownLatch.await(); //await 自动检测
long end = System.currentTimeMillis();
long between = end - start;
System.out.println("总耗时:"+between);
}
}
序列化与反序列化问题,以及反射问题
public class SingleLanHanSerial implements Serializable{
private static SingleLanHanSerial singleLanHan;
private SingleLanHanSerial(){
if(singleLanHan != null){ //防止反射
throw new RuntimeException();
}
}
public static synchronized SingleLanHanSerial getSingleLanHan(){
// synchronized 调用效率低
if(singleLanHan == null){
singleLanHan = new SingleLanHanSerial();
}
return singleLanHan;
}
// 反序列化,如果定义了readResolve方法,就直接返回Instance实例,防止了反序列化的漏洞
private Object readResolve() throws ObjectStreamException {
return singleLanHan;
}
}
反射测试序列化测试
public class ClientEnum {
public static void main(String[] args) throws Exception {
//通过反射机制创造对象
Class<SingleLanHan> lanHanClazz = (Class<SingleLanHan>)Class.forName("com.jenny.mole.single.SingleLanHan");
Constructor<SingleLanHan> constructor = lanHanClazz.getDeclaredConstructor(null);
constructor.setAccessible(true); //可以访问私有方法了这样
SingleLanHan singleLanHan = constructor.newInstance();
SingleLanHan singleLanHan1 = constructor.newInstance();
System.out.println(singleLanHan);
System.out.println(singleLanHan1);
// 通过反序列化的方式创造对象
SingleLanHanSerial single2 = SingleLanHanSerial.getSingleLanHan();
FileOutputStream fos = new FileOutputStream("/d:/a.txt");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(single2);
ObjectInputStream ois = new
ObjectInputStream(new FileInputStream("/d:/a.txt"));
SingleLanHanSerial s3 = (SingleLanHanSerial)ois.readObject();
System.out.println(single2);
System.out.println(s3);
}
}
静态内部类
外部类没有static属性,则不会像懒汉式那样立即加载对象只有真正调用getInstance,才会加载静态内部类,加载类时时线程安全的,Instance是static final类型,保证了内存中只有一个实例存在,而且只能被赋值一次,从而保证了线程安全性兼备了并发高效调用和延迟加载的优势
枚举方式
- 优点:实现简单,枚举本身就是单例模式,由JVM从根本上提供保障,避免通过反射和反序列化的漏洞
- 缺点:无延迟加载
如何选用
- 单例对象,占用资源少,不需要延时加载:枚举好于 懒汉式
- 单例对象占用资源大,需要延时加载:静态内部类好于懒汉式