设计模式之命令模式Command

本文详细介绍了命令模式的概念、结构和应用场景,包括如何通过命令模式实现回调、命令排队、撤销操作等功能,并探讨了其优缺点。

命令模式 

命令模式:将一个请求封装为一个对象,从而使我们可用不同的请求对客户进行参数化;对请求排队或者记录请求日志,以及支持可撤销的操作。也称之为:动作Action模式、事务transaction模式

 

结构:

  • Command抽象命令类
  • ConcreteCommand具体命令类
  • Invoker调用者/请求者:请求的发送者,它通过命令对象来执行请求,一个调用者并不需要再设计时确定其接受者,因此它只与抽象命令类之间存在关联。在程序运行时,将调用命令对象的execute(),间接调用接收者的相关操作。
  • Receiver接收者:接收者执行与请求相关的操作,具体实现对请求的业务处理未抽象前,实际执行操作内容的对象。
  • Client客户端:在客户类中需要创建调用者对象,具体命令类对象,在创建具体命令对象时指定对用的接收者,发送者和接收者直接没有直接关系,都通过命令对象间接调用 。

结构图



 代码

 

/**
 * 真正的命令执行者
 */
public class Receiver {

    public void action(){
        System.out.println("Receiver action");
    }
}



public interface Command {
    /**
     * 这个方法是一个返回结果为空的方法 ,实际项目中可以根据需求设计多个不同的方法
     */
    void execute();
}

class ConcreteCommand implements Command{
    private Receiver receiver;//命令的真正执行者

    public ConcreteCommand(Receiver receiver){
        super();
        this.receiver = receiver;
    }

    @Override
    public void execute() {

        //命令的真正执行前后,执行相关的操作
        receiver.action();
    }
}


/**
 * 调用者或发起者
 */
public class Invoker {

    private Command command;//也可以通过容器List<Command>容器很多命令,进行批处理,数据库底层的事务管理就是类似的结构

    public Invoker(Command command){
        super();
        this.command = command;
    }
//业务方法,用于调用命令类的方法
    public  void call(){
        command.execute();
    }
}


public class Client {

    public static void main(String[] args){
        Command command = new ConcreteCommand(new Receiver());
        Invoker invoker = new Invoker(command);
        invoker.call();
    }
}

 

 

应用场景
Struct2中,action的整个调用过程中就有命令模式
数据库事务机制的底层实现
命令的撤销和恢复 
 

在下面的情况下应当考虑使用命令模式:

1、使用命令模式作为"CallBack"在面向对象系统中的替代。"CallBack"讲的便是先将一个函数登记上,然后在以后调用此函数。

2、需要在不同的时间指定请求、将请求排队。一个命令对象和原先的请求发出者可以有不同的生命期。换言之,原先的请求发出者可能已经不在了,而命令对象本身仍然是活动的。这时命令的接收者可以是在本地,也可以在网络的另外一个地址。命令对象可以在串形化之后传送到另外一台机器上去。

3、系统需要支持命令的撤消(undo)。命令对象可以把状态存储起来,等到客户端需要撤销命令所产生的效果时,可以调用undo()方法,把命令所产生的效果撤销掉。命令对象还可以提供redo()方法,以供客户端在需要时,再重新实施命令效果。

4、如果一个系统要将系统中所有的数据更新到日志里,以便在系统崩溃时,可以根据日志里读回所有的数据更新命令,重新调用Execute()方法一条一条执行这些命令,从而恢复系统在崩溃前所做的数据更新。

5、一个系统需要支持交易(Transaction)。一个交易结构封装了一组数据更新命令。使用命令模式来实现交易结构可以使系统增加新的交易类型。

 

命令允许请求的一方和接收请求的一方能够独立演化,从而且有以下的优点:

  • 命令模式使新的命令很容易地被加入到系统里。
  • 允许接收请求的一方决定是否要否决(Veto)请求。
  • 能较容易地设计-个命令队列。
  • 可以容易地实现对请求的Undo和Redo。
  • 在需要的情况下,可以较容易地将命令记入日志。
  • 命令模式把请求一个操作的对象与知道怎么执行一个操作的对象分割开。
  • 命令类与其他任何别的类一样,可以修改和推广。
  • 你可以把命令对象聚合在一起,合成为合成命令。比如宏命令便是合成命令的例子。合成命令是合成模式的应用。
  • 由于加进新的具体命令类不影响其他的类,因此增加新的具体命令类很容易。

命令模式的缺点如下:

  • 使用命令模式会导致某些系统有过多的具体命令类。某些系统可能需要几十个,几百个甚至几千个具体命令类,这会使命令模式在这样的系统里变得不实际。

 

<think>嗯,用户想了解CRC32校验算法的实现和使用方法。我需要先回顾一下CRC32的基本原理,然后考虑如何用简单易懂的中文解释清楚。首先,CRC32是基于循环冗余校验的一种算法,主要用于检测数据传输或存储中的错误。用户可能希望知道它的具体步骤,比如如何初始化、处理数据、异或操作以及最终得到校验值。 根据提供的引用资料,CRC32的核心是多项式除法,但实际中通过查表法优化速度。需要解释生成多项式,比如常见的0xEDB88320,以及初始值、输入输出是否反转这些参数。用户提供的代码片段中有两个版本,一个是逐位计算,另一个是查表法,这可能需要在回答中对比说明,突出查表法的效率优势。 接下来,用户可能关心具体怎么使用这个算法,比如在C语言中的实现步骤,或者如何应用到实际项目中,比如文件校验或网络传输。要分步骤讲解,从初始化到处理每个字节,再到最终计算,可能需要示例代码来辅助说明。同时,注意用户要求行内数学表达式用$...$,比如多项式应该写成$0xEDB88320$这样的格式。 另外,用户的问题里提到生成相关问题,我需要考虑相关的问题可能涉及性能优化、不同生成多项式的影响,或者CRC32与其他校验算法的比较。这些可以作为相关问题放在最后,帮助用户进一步探索。 需要确保回答结构清晰,先讲原理,再讲实现步骤,然后使用方法,最后附上相关问题。同时,引用提供的资料,比如引用[^1]和[^2]来支持解释。要避免技术术语过于复杂,保持语言通俗易懂,同时满足LaTeX格式要求,比如多项式用$符号包裹。检查是否有遗漏的步骤,比如输入反转和输出反转的处理,这在代码示例中有所体现,需要解释清楚这些参数的作用。</think>### CRC32校验算法实现及使用方法 #### 一、CRC32基本原理 CRC32通过多项式除法生成32位校验值,用于检测数据传输或存储中的错误。其核心是生成多项式$G(x)$,常用标准为$0xEDB88320$(反向多项式形式)[^1]。算法流程如下: 1. **初始化**:设置32位寄存器初值为$0xFFFFFFFF$ 2. **数据输入**:逐字节与寄存器异或运算 3. **位移处理**:根据多项式进行循环移位和异或操作 4. **结果取反**:最终值与$0xFFFFFFFF$异或 #### 二、算法实现(C语言) ```c // 查表法实现(高效) uint32_t crc32_table[256]; void init_crc32_table() { for (int i = 0; i < 256; i++) { uint32_t crc = i; for (int j = 0; j < 8; j++) { crc = (crc >> 1) ^ ((crc & 1) ? 0xEDB88320 : 0); } crc32_table[i] = crc; } } uint32_t calc_crc32(uint8_t *data, size_t len) { uint32_t crc = 0xFFFFFFFF; while (len--) { crc = (crc >> 8) ^ crc32_table[(crc ^ *data++) & 0xFF]; } return crc ^ 0xFFFFFFFF; } ``` 此实现通过预先生成的256元素查找表,将时间复杂度从$O(n \cdot 8)$优化到$O(n)$。 #### 三、使用场景及方法 1. **文件校验**:计算文件CRC32值验证完整性 ```bash $ crc32 filename.txt ``` 2. **网络传输**:在数据帧尾部附加4字节校验码 3. **存储系统**:RAID、ZFS等文件系统使用CRC32校验数据块 #### 四、参数配置 | 参数 | 说明 | 标准值 | |---------------|---------------------------|-----------------| | 初始值 | 寄存器初始状态 | 0xFFFFFFFF | | 多项式 | 生成多项式 | 0xEDB88320 | | 输入/输出反转 | 字节处理顺序 | 通常需要反转 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值