Autoregressive (AR) Models

本文介绍了自回归(AR)模型在时间序列分析中的应用。AR模型通过递归线性滤波来描述平稳时间序列,其中输出是由滤波器的前一时刻输出的加权和构成。文中还详细解释了AR模型的定义及其参数。
部署运行你感兴趣的模型镜像

The autoregressive (AR) models are used in time series analysis . to describe stationary time series . These models represent time series that are generated by passing the white noise through a recursive linear filter . The output of such a filter at the moment Math image is a weighted sum of Math image previous values of the filter output. The integer parameter Math image is called the order of the AR-model.

The AR-model of a random process Math image in discrete time Math image is defined by the following expression:

 

where

  • Math image are the coefficients of the recursive filter;

  • Math image is the order of the model;

  • Math image are output uncorrelated errors.

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值