The running time of counting sort is O(n), and usually, the running time of sorting algorithms will be either O(n^2) or O(n lgn), the reason why counting sort is O(n) is that it doesn't have the comparison.In fact, the sorting is hidden from line 19 to line 27.
class CountingSortAlgorithm { public void CountingSort(int[] arrayA) { int max = arrayA[0]; for (int i = 1; i < arrayA.Length; i++) { if (arrayA[i] > max) { max = arrayA[i]; } } int[] arrayC = new int[max + 1]; int[] arrayB = new int[arrayA.Length]; for (int i = 0; i < arrayA.Length; i++) { arrayC[arrayA[i]] += 1; } for (int i = 1; i < arrayC.Length; i++) { arrayC[i] += arrayC[i - 1]; } for (int i = arrayA.Length - 1; i >= 0; i--) { arrayB[arrayC[arrayA[i]] - 1] = arrayA[i]; arrayC[arrayA[i]]--; } for (int i = 0; i < arrayA.Length; i++) { arrayA[i] = arrayB[i]; } } }
The code segment above is only suitable for the case in which all the elements in the array are non-negative. If the array
has negative element, we can simply 'shift' the element, such as the minimum element will be considered as 0. I use 'span'
to shift the element.
class CountingSortAlgorithm { public void CountingSort(int[] arrayA) { int max = arrayA[0]; int min = arrayA[0]; for (int i = 1; i < arrayA.Length; i++) { if (arrayA[i] > max) { max = arrayA[i]; } if (arrayA[i] < min) { min = arrayA[i]; } } int span = -min; int[] arrayC = new int[max - min + 1]; int[] arrayB = new int[arrayA.Length]; for (int i = 0; i < arrayA.Length; i++) { arrayC[arrayA[i] + span] += 1; } for (int i = 1; i < arrayC.Length; i++) { arrayC[i] += arrayC[i - 1]; } for (int i = arrayA.Length - 1; i >= 0; i--) { arrayB[arrayC[arrayA[i] + span] - 1] = arrayA[i]; arrayC[arrayA[i] + span]--; } for (int i = 0; i < arrayA.Length; i++) { arrayA[i] = arrayB[i]; } } }