经典背包问题 POJ 3624

本文介绍了一种解决魅力手链问题的动态规划算法,旨在帮助Bessie在给定重量限制下选择最佳魅力饰品组合,以实现最高的魅力值总和。通过使用滚动数组优化内存使用,确保了算法的有效性和实用性。

Charm Bracelet
Time Limit:1000MS Memory Limit:65536K
Total Submissions:6996 Accepted:3174

Description

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from theN(1 ≤N≤ 3,402) available charms. Each charmiin the supplied list has a weightWi(1 ≤Wi≤ 400), a 'desirability' factorDi(1 ≤Di≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more thanM(1 ≤M≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers:NandM
* Lines 2..N+1: Linei+1 describes charmiwith two space-separated integers:WiandDi

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

Sample Output

23
用滚动数组写的,否则超内存
#include<stdio.h>
int opt[3][12881];
int value[3450];
int weight[3450];


int main()
{
    int n,v;
    int i,j;
    freopen("input","r",stdin);
    scanf("%d %d",&n,&v);
    for(i=0;i<n;i++)
        scanf("%d %d",&weight[i],&value[i]);
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=v;j++)
        {
            if(j>=weight[i-1])
                opt[i%3][j]=(opt[(i-1)%3][j]>opt[(i-1)%3][j-weight[i-1]]+value[i-1]?opt[(i-1)%3][j]:opt[(i-1)%3][j-weight[i-1]]+value[i-1]);
            else
                opt[i%3][j]=opt[(i-1)%3][j];
        }
    }
    printf("%d",opt[n%3][v]);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值