Heap Sort 实现(MIT Algorithm Course)

根据算法导论实现。有个小缺陷,heapsort中result是逆序排序。

def parent(i):
return i%2;

def left(i):
return 2*i+1;

def right(i):
return 2*(i+1);

def maxHeapify(numList,i):
l = left(i);
r = right(i);
if l<= len(numList)-1 and numList[l] > numList[i]:
largest = l;
else:
largest = i;
if r<= len(numList)-1 and numList[r] > numList[largest]:
largest = r;
if largest != i:
numList[i], numList[largest] = numList[largest], numList[i]; #swap
maxHeapify(numList,largest);

def buildMaxHeap(numList):
heapsize = len(numList);
for i in range(len(numList)//2-1,-1,-1):
maxHeapify(numList,i);

def heapSort(numList):
global alist;
alist = numList;
result= [];
buildMaxHeap(alist);
for i in range(len(alist)-1,0,-1):
alist[0], alist[i] = alist[i], alist[0];
#print(alist[i]);
#print(i);
result.append(alist.pop(i));
maxHeapify(alist,0);
result.append(alist.pop());
return result;


从Stackoverflow找到的一种实现方式
def swap(i, j):                    
sqc[i], sqc[j] = sqc[j], sqc[i]

def heapify(end,i):
l=2 * i + 1
r=2 * (i + 1)
max=i
if l < end and sqc[i] < sqc[l]:
max = l
if r < end and sqc[max] < sqc[r]:
max = r
if max != i:
swap(i, max)
heapify(end, max)

def heap_sort():
end = len(sqc)
start = end // 2 - 1 # use // instead of /
for i in range(start, -1, -1):
heapify(end, i)
for i in range(end-1, 0, -1):
swap(i, 0)
heapify(i, 0)

sqc = [2, 7, 1, -2, 56, 5, 3]
heap_sort()
print(sqc)
Intermediate heaps during heap sort algorithm: Step 1: Remove the root node (40) and replace it with the last node (20). The heap becomes [20,30,15,10,40]. ``` 40 / \ 30 15 / \ 10 20 20 / \ 30 15 / 10 \ 40 ``` Step 2: Heapify the heap to maintain the max heap property. The heap becomes [30,20,15,10,40]. ``` 20 / \ 30 15 / 10 \ 40 30 / \ 20 15 / 10 \ 40 ``` Step 3: Remove the root node (30) and replace it with the last node (10). The heap becomes [10,20,15,30,40]. ``` 30 / \ 20 15 / 10 \ 40 10 / \ 20 15 / 30 \ 40 ``` Step 4: Heapify the heap to maintain the max heap property. The heap becomes [20,10,15,30,40]. ``` 10 / \ 20 15 / 30 \ 40 20 / \ 10 15 / 30 \ 40 ``` Step 5: Remove the root node (20) and replace it with the last node (15). The heap becomes [15,10,20,30,40]. ``` 20 / \ 10 15 / 30 \ 40 15 / \ 10 20 / 30 \ 40 ``` Step 6: Heapify the heap to maintain the max heap property. The heap becomes [10,15,20,30,40]. ``` 15 / \ 10 20 / 30 \ 40 10 / \ 15 20 / 30 \ 40 ``` Step 7: Remove the root node (10) and replace it with the last node (40). The heap becomes [40,15,20,30]. ``` 10 / \ 15 20 / 30 \ 40 40 / \ 15 20 / 30 ``` Step 8: Heapify the heap to maintain the max heap property. The heap becomes [20,15,40,30]. ``` 15 / \ 40 20 / 30 20 / \ 15 40 / 30 ``` Step 9: Remove the root node (20) and replace it with the last node (30). The heap becomes [40,15,30]. ``` 20 / \ 15 40 / 30 30 / \ 15 40 ``` Step 10: Heapify the heap to maintain the max heap property. The heap becomes [40,15,30]. ``` 30 / \ 15 40 40 / \ 15 30 ``` Step 11: Remove the root node (40) and replace it with the last node (30). The heap becomes [30,15]. ``` 40 / \ 15 30 30 / 15 ``` Step 12: Heapify the heap to maintain the max heap property. The heap becomes [30,15]. ``` 15 / 30 ``` Step 13: Remove the root node (30) and replace it with the last node (15). The heap becomes [15]. ``` 30 / 15 15 ``` Step 14: Heapify the heap to maintain the max heap property. The heap becomes [15]. ``` 15 ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值