教室里的师生——《How to solve it 》观点

本文探讨了教师在帮助学生成长过程中的重要角色,强调个性化帮助的必要性和适度鼓励学生独立工作的平衡。文章引用《How to Solve It》一书的观点,阐述了教师如何通过提供恰当的支持,促进学生在教室中的有效学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  假期的导教班听陈道蓄老师推荐了经典书籍《How to solve it 》,今天再次翻出,再读其开篇部分之目的,重温教师和学生“在教室中”的任务,【】中加些批注。

  • 教师最重要的任务之一是帮助学生。这个任务并不很简单,它需要时间、实践、热忱以及健全合理的原则。【在教室里,教师帮助学生,比常见的讲课、做题,要宽得多,教师需要有很宽的视野,去完成不容易做到的“帮助”人的事。】
  • 学生应当有尽可能多的独立工作经验。但是如果让他独自面对问题而得不到任何帮助或者帮助得不够。那么他很可能没有进步。但若教师对他帮助过多,那么学生却又无事可干,教师对学生的帮助应当不多不少,恰使学生有一份合理的工作。【学习中主要落实到学生的行动,无论学生的水平怎样,或者针对不同水平的学生,教师都应该帮助其更好,这种帮助是需要个性化的。并且,帮助要恰当,过份的帮助,及不能形成共识的帮助,只是徒劳。】
  • 如果学生不太能够独立工作,那末教师也至少应当使他感觉自己是在独立工作。为了做到这一点,教师应当考虑周到地、不显眼地帮助学生。【这是种境界。球场上,人们感觉不到裁判的存在,那是场好比赛,裁判是好裁判;教室里,知识在传播和发展,那是好课堂,教师是好教师。】
  • 不过,对学生的帮助最好是顺乎自然。教师对学生应当设身处地,应当了解学生情况,应当弄清学生正在想什么,并且提出一个学生自己可能会产生的问题,或者指出一个学生自己可能会想出来的步骤。【针对解算一个具体的问题是这样,引导学生成长又何其不是这样呢?】
A perennial bestseller by eminent mathematician G. Polya, "How to Solve It" will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft - indeed, brilliant - instructions on stripping away irrelevancies and going straight to the heart of the problem. In this best-selling classic, George Polya revealed how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams.Generations of readers have relished Polya's deft instructions on stripping away irrelevancies and going straight to the heart of a problem. "How to Solve It" popularized heuristics, the art and science of discovery and invention. It has been in print continuously since 1945 and has been translated into twenty-three different languages. Polya was one of the most influential mathematicians of the twentieth century. He made important contributions to a great variety of mathematical research: from complex analysis to mathematical physics, number theory, probability, geometry, astronomy, and combinatorics. He was also an extraordinary teacher - he taught until he was ninety - and maintained a strong interest in pedagogical matters throughout his long career.In addition to "How to Solve It", he published a two-volume work on the topic of problem solving, "Mathematics of Plausible Reasoning", also with Princeton. Polya is one of the most frequently quoted mathematicians, and the following statements from "How to Solve It" make clear why: "My method to overcome a difficulty is to go around it." "Geometry is the science of correct reasoning on incorrect figures." "In order to solve this differential equa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值