What is Extreme Programming?

极限编程(XP)是一种软件开发方式,强调简单性、沟通、反馈和勇气等价值观。通过整个团队紧密合作,采用核心实践如结对编程、持续集成等手段,确保软件质量并持续提供业务价值。

xp 网站看到的,有空来翻译下。

 

What is Extreme Programming?
Ron Jeffries
11/08/2001

Extreme Programming is a discipline of software development based on values of simplicity, communication, feedback, and courage. It works by bringing the whole team together in the presence of simple practices, with enough feedback to enable the team to see where they are and to tune the practices to their unique situation.

 

In Extreme Programming, every contributor to the project is an integral part of the "Whole Team ". The team forms around a business representative called "the Customer", who sits with the team and works with them daily.

Extreme Programming teams use a simple form of planning and tracking to decide what should be done next and to predict when the project will be done. Focused on business value, the team produces the software in a series of small fully-integrated releases that pass all the tests the Customer has defined.

Extreme Programmers work together in pairs and as a group, with simple design and obsessively tested code, improving the design continually to keep it always just right for the current needs.

The Extreme Programming team keeps the system integrated and running all the time. The programmers write all production code in pairs, and all work together all the time. They code in a consistent style so that everyone can understand and improve all the code as needed.

The Extreme Programming team shares a common and simple picture of what the system looks like. Everyone works at a pace that can be sustained indefinitely.

Core Practices

Whole Team

All the contributors to an XP project sit together, members of one team. This team must include a business representative -- the "Customer" -- who provides the requirements, sets the priorities, and steers the project. It's best if the Customer or one of her aides is a real end user who knows the domain and what is needed. The team will of course have programmers. The team may include testers, who help the Customer define the customer acceptance tests. Analysts may serve as helpers to the Customer, helping to define the requirements. There is commonly a coach, who helps the team keep on track, and facilitates the process. There may be a manager, providing resources, handling external communication, coordinating activities. None of these roles is necessarily the exclusive property of just one individual: Everyone on an XP team contributes in any way that they can. The best teams have no specialists, only general contributors with special skills.

Planning Game

XP planning addresses two key questions in software development: predicting what will be accomplished by the due date, and determining what to do next. The emphasis is on steering the project -- which is quite straightforward -- rather than on exact prediction of what will be needed and how long it will take -- which is quite difficult. There are two key planning steps in XP, addressing these two questions:

Release Planning is a practice where the Customer presents the desired features to the programmers, and the programmers estimate their difficulty. With the cost estimates in hand, and with knowledge of the importance of the features, the Customer lays out a plan for the project. Initial release plans are necessarily imprecise: neither the priorities nor the estimates are truly solid, and until the team begins to work, we won't know just how fast they will go. Even the first release plan is accurate enough for decision making, however, and XP teams revise the release plan regularly.

Iteration Planning is the practice whereby the team is given direction every couple of weeks. XP teams build software in two-week "iterations", delivering running useful software at the end of each iteration. During Iteration Planning, the Customer presents the features desired for the next two weeks. The programmers break them down into tasks, and estimate their cost (at a finer level of detail than in Release Planning). Based on the amount of work accomplished in the previous iteration, the team signs up for what will be undertaken in the current iteration.

These planning steps are very simple, yet they provide very good information and excellent steering control in the hands of the Customer. Every couple of weeks, the amount of progress is entirely visible. There is no "ninety percent done" in XP: a feature story was completed, or it was not. This focus on visibility results in a nice little paradox: on the one hand, with so much visibility, the Customer is in a position to cancel the project if progress is not sufficient. On the other hand, progress is so visible, and the ability to decide what will be done next is so complete, that XP projects tend to deliver more of what is needed, with less pressure and stress.

Customer Tests

As part of presenting each desired feature, the XP Customer defines one or more automated acceptance tests to show that the feature is working. The team builds these tests and uses them to prove to themselves, and to the customer, that the feature is implemented correctly. Automation is important because in the press of time, manual tests are skipped. That's like turning off your lights when the night gets darkest.

The best XP teams treat their customer tests the same way they do programmer tests : once the test runs, the team keeps it running correctly thereafter. This means that the system only improves, always notching forward, never backsliding.

Small Releases

XP teams practice small releases in two important ways:

First, the team releases running, tested software, delivering business value chosen by the Customer, every iteration. The Customer can use this software for any purpose, whether evaluation or even release to end users (highly recommended). The most important aspect is that the software is visible, and given to the customer, at the end of every iteration. This keeps everything open and tangible.

Second, XP teams release to their end users frequently as well. XP Web projects release as often as daily, in house projects monthly or more frequently. Even shrink-wrapped products are shipped as often as quarterly.

It may seem impossible to create good versions this often, but XP teams all over are doing it all the time. See Continuous Integration for more on this, and note that these frequent releases are kept reliable by XP's obsession with testing, as described here in Customer Tests and Test-Driven Development .

Simple Design

XP teams build software to a simple design. They start simple, and through programmer testing and design improvement , they keep it that way. An XP team keeps the design exactly suited for the current functionality of the system. There is no wasted motion, and the software is always ready for what's next.

Design in XP is not a one-time thing, or an up-front thing, it is an all-the-time thing. There are design steps in release planning and iteration planning, plus teams engage in quick design sessions and design revisions through refactoring, through the course of the entire project. In an incremental, iterative process like Extreme Programming, good design is essential. That's why there is so much focus on design throughout the course of the entire development.

Pair Programming

All production software in XP is built by two programmers, sitting side by side, at the same machine. This practice ensures that all production code is reviewed by at least one other programmer, and results in better design, better testing, and better code.

It may seem inefficient to have two programmers doing "one programmer's job", but the reverse is true. Research into pair programming shows that pairing produces better code in about the same time as programmers working singly. That's right: two heads really are better than one!

Some programmers object to pair programming without ever trying it. It does take some practice to do well, and you need to do it well for a few weeks to see the results. Ninety percent of programmers who learn pair programming prefer it, so we highly recommend it to all teams.

Pairing, in addition to providing better code and tests, also serves to communicate knowledge throughout the team. As pairs switch, everyone gets the benefits of everyone's specialized knowledge. Programmers learn, their skills improve, they become more valuable to the team and to the company. Pairing, even on its own outside of XP, is a big win for everyone.

Test-Driven Development

Extreme Programming is obsessed with feedback, and in software development, good feedback requires good testing. Top XP teams practice "test-driven development", working in very short cycles of adding a test, then making it work. Almost effortlessly, teams produce code with nearly 100 percent test coverage, which is a great step forward in most shops. (If your programmers are already doing even more sophisticated testing, more power to you. Keep it up, it can only help!)

It isn't enough to write tests: you have to run them. Here, too, Extreme Programming is extreme. These "programmer tests", or "unit tests" are all collected together, and every time any programmer releases any code to the repository (and pairs typically release twice a day or more), every single one of the programmer tests must run correctly. One hundred percent, all the time! This means that programmers get immediate feedback on how they're doing. Additionally, these tests provide invaluable support as the software design is improved.

Design Improvement

Extreme Programming focuses on delivering business value in every iteration. To accomplish this over the course of the whole project, the software must be well-designed. The alternative would be to slow down and ultimately get stuck. So XP uses a process of continuous design improvement called Refactoring , from the title of Martin Fowler's book, "Refactoring: Improving the Design of Existing Code ".

The refactoring process focuses on removal of duplication (a sure sign of poor design), and on increasing the "cohesion" of the code, while lowering the "coupling". High cohesion and low coupling have been recognized as the hallmarks of well-designed code for at least thirty years. The result is that XP teams start with a good, simple design, and always have a good, simple design for the software. This lets them sustain their development speed, and in fact generally increase speed as the project goes forward.

Refactoring is, of course, strongly supported by comprehensive testing to be sure that as the design evolves, nothing is broken. Thus the customer tests and programmer tests are a critical enabling factor. The XP practices support each other: they are stronger together than separately.

Continuous Integration

Extreme Programming teams keep the system fully integrated at all times. We say that daily builds are for wimps: XP teams build multiple times per day. (One XP team of forty people builds at least eight or ten times per day!)

The benefit of this practice can be seen by thinking back on projects you may have heard about (or even been a part of) where the build process was weekly or less frequently, and usually led to "integration hell", where everything broke and no one knew why.

Infrequent integration leads to serious problems on a software project. First of all, although integration is critical to shipping good working code, the team is not practiced at it, and often it is delegated to people who are not familiar with the whole system. Second, infrequently integrated code is often -- I would say usually -- buggy code. Problems creep in at integration time that are not detected by any of the testing that takes place on an unintegrated system. Third, weak integration process leads to long code freezes. Code freezes mean that you have long time periods when the programmers could be working on important shippable features, but that those features must be held back. This weakens your position in the market, or with your end users.

Collective Code Ownership

On an Extreme Programming project, any pair of programmers can improve any code at any time. This means that all code gets the benefit of many people's attention, which increases code quality and reduces defects. There is another important benefit as well: when code is owned by individuals, required features are often put in the wrong place, as one programmer discovers that he needs a feature somewhere in code that he does not own. The owner is too busy to do it, so the programmer puts the feature in his own code, where it does not belong. This leads to ugly, hard-to-maintain code, full of duplication and with low (bad) cohesion.

Collective ownership could be a problem if people worked blindly on code they did not understand. XP avoids these problems through two key techniques: the programmer tests catch mistakes, and pair programming means that the best way to work on unfamiliar code is to pair with the expert. In addition to ensuring good modifications when needed, this practice spreads knowledge throughout the team.

Coding Standard

XP teams follow a common coding standard, so that all the code in the system looks as if it was written by a single -- very competent -- individual. The specifics of the standard are not important: what is important is that all the code looks familiar, in support of collective ownership.

Metaphor

Extreme Programming teams develop a common vision of how the program works, which we call the "metaphor". At its best, the metaphor is a simple evocative description of how the program works, such as "this program works like a hive of bees, going out for pollen and bringing it back to the hive" as a description for an agent-based information retrieval system.

Sometimes a sufficiently poetic metaphor does not arise. In any case, with or without vivid imagery, XP teams use a common system of names to be sure that everyone understands how the system works and where to look to find the functionality you're looking for, or to find the right place to put the functionality you're about to add.

Sustainable Pace

Extreme Programming teams are in it for the long term. They work hard, and at a pace that can be sustained indefinitely. This means that they work overtime when it is effective, and that they normally work in such a way as to maximize productivity week in and week out. It's pretty well understood these days that death march projects are neither productive nor produce quality software. XP teams are in it to win, not to die.

Conclusion

Extreme Programming is a discipline of software development based on values of simplicity, communication, feedback, and courage. It works by bringing the whole team together in the presence of simple practices, with enough feedback to enable the team to see where they are and to tune the practices to their unique situation.

Picture

Here's a picture showing the practices and the main "cycles" of XP.

基于51单片机,实现对直流电机的调速、测速以及正反转控制。项目包含完整的仿真文件、源程序、原理图和PCB设计文件,适合学习和实践51单片机在电机控制方面的应用。 功能特点 调速控制:通过按键调整PWM占空比,实现电机的速度调节。 测速功能:采用霍尔传感器非接触式测速,实时显示电机转速。 正反转控制:通过按键切换电机的正转和反转状态。 LCD显示:使用LCD1602液晶显示屏,显示当前的转速和PWM占空比。 硬件组成 主控制器:STC89C51/52单片机(与AT89S51/52、AT89C51/52通用)。 测速传感器:霍尔传感器,用于非接触式测速。 显示模块:LCD1602液晶显示屏,显示转速和占空比。 电机驱动:采用双H桥电路,控制电机的正反转和调速。 软件设计 编程语言:C语言。 开发环境:Keil uVision。 仿真工具:Proteus。 使用说明 液晶屏显示: 第一行显示电机转速(单位:转/分)。 第二行显示PWM占空比(0~100%)。 按键功能: 1键:加速键,短按占空比加1,长按连续加。 2键:减速键,短按占空比减1,长按连续减。 3键:反转切换键,按下后电机反转。 4键:正转切换键,按下后电机正转。 5键:开始暂停键,按一下开始,再按一下暂停。 注意事项 磁铁和霍尔元件的距离应保持在2mm左右,过近可能会在电机转动时碰到霍尔元件,过远则可能导致霍尔元件无法检测到磁铁。 资源文件 仿真文件:Proteus仿真文件,用于模拟电机控制系统的运行。 源程序:Keil uVision项目文件,包含完整的C语言源代码。 原理图:电路设计原理图,详细展示了各模块的连接方式。 PCB设计:PCB布局文件,可用于实际电路板的制作。
【四旋翼无人机】具备螺旋桨倾斜机构的全驱动四旋翼无人机:建模与控制研究(Matlab代码、Simulink仿真实现)内容概要:本文围绕具备螺旋桨倾斜机构的全驱动四旋翼无人机展开研究,重点进行了系统建模与控制策略的设计与仿真验证。通过引入螺旋桨倾斜机构,该无人机能够实现全向力矢量控制,从而具备更强的姿态调节能力和六自由度全驱动特性,克服传统四旋翼欠驱动限制。研究内容涵盖动力学建模、控制系统设计(如PID、MPC等)、Matlab/Simulink环境下的仿真验证,并可能涉及轨迹跟踪、抗干扰能力及稳定性分析,旨在提升无人机在复杂环境下的机动性与控制精度。; 适合人群:具备一定控制理论基础和Matlab/Simulink仿真能力的研究生、科研人员及从事无人机系统开发的工程师,尤其适合研究先进无人机控制算法的技术人员。; 使用场景及目标:①深入理解全驱动四旋翼无人机的动力学建模方法;②掌握基于Matlab/Simulink的无人机控制系统设计与仿真流程;③复现硕士论文级别的研究成果,为科研项目或学术论文提供技术支持与参考。; 阅读建议:建议结合提供的Matlab代码与Simulink模型进行实践操作,重点关注建模推导过程与控制器参数调优,同时可扩展研究不同控制算法的性能对比,以深化对全驱动系统控制机制的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值