1069 The Black Hole of Numbers (20 分)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 – the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we’ll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
Code:
#include <iostream>
#include <algorithm>
#pragma warning(disable:4996)
using namespace std;
void n2a(int arr[], int n)
{
arr[0] = n / 1000;
arr[1] = n % 1000 / 100;
arr[2] = n % 100 / 10;
arr[3] = n % 10;
sort(arr, arr + 4);
}
int a2n(int* a, bool flag)
{
return (flag == 0 ? a[0] * 1000 + a[1] * 100 + a[2] * 10 + a[3] : a[3] * 1000 + a[2] * 100 + a[1] * 10 + a[0]);
}
int main()
{
int n;
scanf("%d", &n);
int arr[4];
n2a(arr, n);
if (arr[0] == arr[1] && arr[1] == arr[2] && arr[2] == arr[3])
{
printf("%04d - %04d = 0000\n", n, n);
return 0;
}
int temp = n, n1, n2;
do // 用do……while防止特例6174
{
n2a(arr, temp);
n1 = a2n(arr, 1);
n2 = a2n(arr, 0);
temp = n1 - n2;
printf("%04d - %04d = %04d\n", n1, n2, temp);
} while (temp != 6174);
return 0;
}