PAT-A1151 LCA in a Binary Tree (30)

本文介绍了一种寻找二叉树中两个节点的最低公共祖先(LCA)的有效算法,并提供了一个完整的C++实现示例。该算法首先通过输入的中序遍历和前序遍历序列构建二叉树,然后利用路径记录的方法找到两个指定节点的公共祖先。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.

Given any two nodes in a binary tree, you are supposed to find their LCA.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the binary tree, respectively. In each of the following two lines, N distinct integers are given as the inorder and preorder traversal sequences of the binary tree, respectively. It is guaranteed that the binary tree can be uniquely determined by the input sequences. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

Output Specification:

For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found..

Sample Input:

6 8
7 2 3 4 6 5 1 8
5 3 7 2 6 4 8 1
2 6
8 1
7 9
12 -3
0 8
99 99

Sample Output:

LCA of 2 and 6 is 3.
8 is an ancestor of 1.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

原题..考试的时候就觉得这题做过...A1143的BST换成BT了,之前用建树的笨办法做过一次,考试直接用了

#include <cstdio>
#include <set>
#include <map>
#include <vector>
#include <algorithm>
using namespace std;
const int MAXN=1e4+10;

int M,N,cnt=0,ROOT=-1;
int InOrder[MAXN],PreOrder[MAXN];
set<int> st;
map<int,int> mp,pos;
struct node{
    int data,left,right,parent;
}BIT[MAXN];
int NewNode(int key,int parent){
    BIT[cnt].data=key;
    BIT[cnt].left=BIT[cnt].right=-1;
    BIT[cnt].parent=parent;
    pos[key]=cnt;
    return cnt++;
}
void CreateBIT(int &root,int pL,int pR,int iL,int iR,int parent){
    if(pL>pR) return;
    if(root==-1) root=NewNode(PreOrder[pL],parent);
    int k=mp[PreOrder[pL]];
    int nL=k-iL,nR=iR-k;
    CreateBIT(BIT[root].left,pL+1,pL+nL,iL,k-1,root);
    CreateBIT(BIT[root].right,pR-nR+1,pR,k+1,iR,root);
}
int LCA(int pu,int pv){
    vector<int> pathu,pathv;
    while(BIT[pu].parent!=-1){
        pathu.push_back(BIT[pu].data);
        pu=BIT[pu].parent;
    }
    pathu.push_back(BIT[pu].data);
    while(BIT[pv].parent!=-1){
        pathv.push_back(BIT[pv].data);
        pv=BIT[pv].parent;
    }
    pathv.push_back(BIT[pv].data);
    int A,i=pathu.size()-1,j=pathv.size()-1;
    while(i>=0&&j>=0&&pathu[i]==pathv[j]){
        A=pathu[i];
        --i;--j;
    }
    return A;
}
int main()
{
    int u,v;
    scanf("%d%d",&M,&N);
    for(int i=0;i<N;++i){
        scanf("%d",InOrder+i);
        st.insert(InOrder[i]);
        mp[InOrder[i]]=i;
    }
    for(int i=0;i<N;++i)
        scanf("%d",PreOrder+i);
    CreateBIT(ROOT,0,N-1,0,N-1,-1);
    for(int i=0;i<M;++i){
        scanf("%d%d",&u,&v);
        int fu=st.count(u),fv=st.count(v);
        if(fu==0||fv==0){
            if(fu==0&&fv==0)
                printf("ERROR: %d and %d are not found.\n",u,v);
            else if(fu==0)
                printf("ERROR: %d is not found.\n",u);
            else
                printf("ERROR: %d is not found.\n",v);
            continue;
        }
        int A=LCA(pos[u],pos[v]);
        if(A!=u&&A!=v)
            printf("LCA of %d and %d is %d.\n",u,v,A);
        else if(A==u)
            printf("%d is an ancestor of %d.\n",u,v);
        else
            printf("%d is an ancestor of %d.\n",v,u);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值