Spring Boot集成Spring AI与Milvus实现智能问答系统

Spring Boot集成AI与Milvus实现问答系统

在Spring Boot中集成Spring AI与Milvus实现智能问答系统

引言

随着人工智能技术的快速发展,智能问答系统在企业中的应用越来越广泛。本文将介绍如何在Spring Boot项目中集成Spring AI和向量数据库Milvus,结合RAG(检索增强生成)技术,实现高效的智能问答系统。

技术栈

  • 核心框架: Spring Boot
  • AI技术: Spring AI, RAG, 自然语言语义搜索
  • 向量数据库: Milvus
  • 其他工具: Lombok, MapStruct

实现步骤

1. 环境准备

首先,确保你的开发环境中已经安装了以下工具:

  • JDK 11或更高版本
  • Maven或Gradle
  • Docker(用于运行Milvus)

2. 创建Spring Boot项目

使用Spring Initializr创建一个新的Spring Boot项目,添加以下依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <optional>true</optional>
</dependency>

3. 集成Spring AI

Spring AI提供了与AI模型交互的便捷方式。通过以下步骤集成Spring AI:

  1. 添加Spring AI依赖:
<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-core</artifactId>
    <version>1.0.0</version>
</dependency>
  1. 配置AI模型参数:
spring:
  ai:
    model: openai
    api-key: your-api-key

4. 集成Milvus向量数据库

Milvus是一款高性能的向量数据库,非常适合用于存储和检索向量数据。

  1. 使用Docker启动Milvus服务:
docker run -d --name milvus -p 19530:19530 -p 9091:9091 milvusdb/milvus:latest
  1. 添加Milvus客户端依赖:
<dependency>
    <groupId>io.milvus</groupId>
    <artifactId>milvus-sdk-java</artifactId>
    <version>2.0.0</version>
</dependency>
  1. 配置Milvus连接:
@Configuration
public class MilvusConfig {
    @Value("${milvus.host}")
    private String host;

    @Value("${milvus.port}")
    private int port;

    @Bean
    public MilvusServiceClient milvusClient() {
        return new MilvusServiceClient(host, port);
    }
}

5. 实现RAG技术

RAG技术通过检索外部知识库来增强生成模型的输出。以下是实现步骤:

  1. 加载企业文档并生成向量:
public List<Float> generateEmbeddings(String text) {
    // 调用Spring AI生成向量
    return springAIService.generateEmbeddings(text);
}
  1. 将向量存储到Milvus:
public void storeEmbeddings(String id, List<Float> embeddings) {
    // 存储向量到Milvus
    milvusClient.insert(id, embeddings);
}
  1. 实现语义搜索:
public List<String> searchSimilarDocuments(String query) {
    // 生成查询向量
    List<Float> queryEmbeddings = generateEmbeddings(query);
    // 在Milvus中搜索相似文档
    return milvusClient.search(queryEmbeddings);
}

6. 构建智能问答接口

最后,构建一个REST接口,接收用户问题并返回智能答案:

@RestController
@RequestMapping("/api/qa")
public class QAController {
    @Autowired
    private QAService qaService;

    @PostMapping
    public String answerQuestion(@RequestBody String question) {
        return qaService.generateAnswer(question);
    }
}

总结

本文详细介绍了如何在Spring Boot项目中集成Spring AI和Milvus,结合RAG技术实现智能问答系统。通过自然语言语义搜索,该系统能够高效地检索企业文档并提供准确的答案。

参考资料

  1. Spring AI官方文档
  2. Milvus官方文档
  3. RAG技术介绍
课程设计报告:总体方案设计说明 一、软件开发环境配置 本系统采用C++作为核心编程语言,结合Qt 5.12.7框架进行图形用户界面开发。数据库管理系统选用MySQL,用于存储用户数据小精灵信息。集成开发环境为Qt Creator,操作系统平台为Windows 10。 二、窗口界面架构设计 系统界面由多个功能模块构成,各模块职责明确,具体如下: 1. 起始界面模块(Widget) 作为应用程序的入口界面,提供初始导航功能。 2. 身份验证模块(Login) 负责处理用户登录账户注册流程,实现身份认证机制。 3. 游戏主大厅模块(Lobby) 作为用户登录后的核心交互区域,集成各项功能入口。 4. 资源管理模块(BagWidget) 展示用户持有的全部小精灵资产,提供可视化资源管理界面。 5. 精灵详情模块(SpiritInfo) 呈现选定小精灵的完整属性数据状态信息。 6. 用户名录模块(UserList) 系统内所有注册用户的基本信息列表展示界面。 7. 个人资料模块(UserInfo) 显示当前用户的详细账户资料历史数据统计。 8. 服务器精灵选择模块(Choose) 对战准备阶段,从服务器可用精灵池中选取参战单位的专用界面。 9. 玩家精灵选择模块(Choose2) 对战准备阶段,从玩家自有精灵库中筛选参战单位的操作界面。 10. 对战演算模块(FightWidget) 实时模拟精灵对战过程,动态呈现战斗动画状态变化。 11. 对战结算模块(ResultWidget) 对战结束后,系统生成并展示战斗结果报告数据统计。 各模块通过统一的事件驱动机制实现数据通信状态同步,确保系统功能的连贯性数据一致性。界面布局遵循模块化设计原则,采用响应式视觉方案适配不同显示环境。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
D3.js作为一种基于JavaScript的数据可视化框架,通过数据驱动的方式实现对网页元素的动态控制,广泛应用于网络结构的图形化呈现。在交互式网络拓扑可视化应用中,该框架展现出卓越的适应性功能性,能够有效处理各类复杂网络数据的视觉表达需求。 网络拓扑可视化工具借助D3.js展示节点间的关联结构。其中,节点对应于网络实体,连线则表征实体间的交互关系。这种视觉呈现模式有助于用户迅速把握网络整体架构。当数据发生变化时,D3.js支持采用动态布局策略重新计算节点分布,从而保持信息呈现的清晰度逻辑性。 网络状态监测界面是该工具的另一个关键组成部分,能够持续反映各连接通道的运行指标,包括传输速度、响应时间及带宽利用率等参数。通过对这些指标的持续追踪,用户可以及时评估网络性能状况并采取相应优化措施。 实时数据流处理机制是提升可视化动态效果的核心技术。D3.js凭借其高效的数据绑定特性,将连续更新的数据流同步映射至图形界面。这种即时渲染方式不仅提升了数据处理效率,同时改善了用户交互体验,确保用户始终获取最新的网络状态信息。 分层拓扑展示功能通过多级视图呈现网络的层次化特征。用户既可纵览全局网络架构,也能聚焦特定层级进行细致观察。各层级视图支持展开或收起操作,便于用户开展针对性的结构分析。 可视化样式定制系统使用户能够根据实际需求调整拓扑图的视觉表现。从色彩搭配、节点造型到整体布局,所有视觉元素均可进行个性化设置,以实现最优的信息传达效果。 支持拖拽缩放操作的交互设计显著提升了工具的使用便利性。用户通过简单的视图操控即可快速浏览不同尺度的网络结构,这一功能降低了复杂网络系统的认知门槛,使可视化工具更具实用价值。 综上所述,基于D3.js开发的交互式网络拓扑可视化系统,整合了结构展示、动态布局、状态监控、实时数据处理、分层呈现及个性化配置等多重功能,形成了一套完整的网络管理解决方案。该系统不仅协助用户高效管理网络资源,还能提供持续的状态监测深度分析能力,在网络运维领域具有重要应用价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值