Spring Boot集成Spring AI与Milvus:构建智能问答系统

在Spring Boot中集成Spring AI与Milvus实现智能问答系统

引言

随着人工智能技术的快速发展,越来越多的企业开始探索如何将AI能力集成到现有的Java生态系统中。本文将介绍如何在Spring Boot项目中集成Spring AI和向量数据库Milvus,构建一个高效的智能问答系统。

技术栈

  • 核心框架: Spring Boot 3.x
  • AI框架: Spring AI
  • 向量数据库: Milvus
  • 其他工具: Lombok, MapStruct

实现步骤

1. 环境准备

首先,确保你的开发环境已经安装了以下工具:

  • JDK 17
  • Maven 3.8+
  • Docker(用于运行Milvus)

2. 创建Spring Boot项目

使用Spring Initializr创建一个新的Spring Boot项目,添加以下依赖:

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-milvus</artifactId>
        <version>1.0.0</version>
    </dependency>
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <optional>true</optional>
    </dependency>
</dependencies>

3. 配置Milvus

启动Milvus服务:

docker run -d --name milvus -p 19530:19530 milvusdb/milvus:latest

application.properties中配置Milvus连接信息:

spring.ai.milvus.host=localhost
spring.ai.milvus.port=19530

4. 实现智能问答功能

创建一个服务类,用于处理用户提问并返回答案:

@Service
@RequiredArgsConstructor
public class QAService {
    private final MilvusTemplate milvusTemplate;

    public String answerQuestion(String question) {
        // 将问题向量化
        float[] embedding = getEmbedding(question);
        // 在Milvus中搜索相似答案
        List<String> results = milvusTemplate.search(embedding, 5);
        return results.isEmpty() ? "未找到相关答案" : results.get(0);
    }

    private float[] getEmbedding(String text) {
        // 调用Spring AI的Embedding模型
        return new float[0]; // 示例代码
    }
}

5. 测试与优化

编写单元测试验证功能,并根据实际需求优化搜索算法和模型参数。

总结

通过本文的介绍,我们成功地在Spring Boot项目中集成了Spring AI和Milvus,实现了一个简单的智能问答系统。未来可以进一步扩展功能,例如支持多轮对话或集成更多AI模型。

跟网型逆变器小干扰稳定性分析控制策略优化研究(Simulink仿真实现)内容概要:本文围绕跟网型逆变器的小干扰稳定性展开分析,重点研究其在电力系统中的动态响应特性及控制策略优化问题。通过构建基于Simulink的仿真模型,对逆变器在不同工况下的小信号稳定性进行建模分析,识别系统可能存在的振荡风险,并提出相应的控制优化方法以提升系统稳定性和动态性能。研究内容涵盖数学建模、稳定性判据分析、控制器设计参数优化,并结合仿真验证所提策略的有效性,为新能源并网系统的稳定运行提供理论支持和技术参考。; 适合人群:具备电力电子、自动控制或电力系统相关背景,熟悉Matlab/Simulink仿真工具,从事新能源并网、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:① 分析跟网型逆变器在弱电网条件下的小干扰稳定性问题;② 设计并优化逆变器外环内环控制器以提升系统阻尼特性;③ 利用Simulink搭建仿真模型验证理论分析控制策略的有效性;④ 支持科研论文撰写、课题研究或工程项目中的稳定性评估改进。; 阅读建议:建议读者结合文中提供的Simulink仿真模型,深入理解状态空间建模、特征值分析及控制器设计过程,重点关注控制参数变化对系统极点分布的影响,并通过动手仿真加深对小干扰稳定性机理的认识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值