Spring Boot集成Spring AI与Milvus:构建高效智能问答系统

在Spring Boot中集成Spring AI与Milvus实现智能问答系统

引言

随着人工智能技术的快速发展,智能问答系统在企业中的应用越来越广泛。本文将介绍如何在Spring Boot项目中集成Spring AI和向量数据库Milvus,结合RAG(检索增强生成)技术,构建一个高效的智能问答系统。

技术栈

  • 核心框架: Spring Boot
  • AI框架: Spring AI
  • 向量数据库: Milvus
  • 检索增强生成: RAG
  • 其他工具: Lombok, MapStruct

实现步骤

1. 环境准备

首先,确保你的开发环境中已经安装了以下工具:

  • JDK 17
  • Maven 3.8+
  • Docker(用于运行Milvus)

2. 创建Spring Boot项目

使用Spring Initializr创建一个新的Spring Boot项目,添加以下依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-core</artifactId>
    <version>1.0.0</version>
</dependency>
<dependency>
    <groupId>io.milvus</groupId>
    <artifactId>milvus-client</artifactId>
    <version>2.0.0</version>
</dependency>

3. 配置Milvus

启动Milvus服务:

docker run -d --name milvus -p 19530:19530 milvusdb/milvus:latest

在Spring Boot项目中配置Milvus客户端:

@Configuration
public class MilvusConfig {
    @Bean
    public MilvusClient milvusClient() {
        return new MilvusClient("localhost", 19530);
    }
}

4. 实现RAG技术

RAG技术的核心是通过向量数据库检索相关信息,并将其作为上下文输入到AI模型中。以下是实现步骤:

  1. 文档加载与向量化

    • 使用Spring AI加载企业文档。
    • 通过Embedding模型(如OpenAI或Ollama)将文档内容向量化。
  2. 向量存储与检索

    • 将向量化后的数据存储到Milvus中。
    • 根据用户问题检索相关文档片段。
  3. 生成回答

    • 将检索到的文档片段作为上下文输入到AI模型中。
    • 生成最终回答。

5. 解决AI幻觉问题

AI幻觉是指模型生成的回答与事实不符。通过以下方法可以缓解这一问题:

  • 增强检索质量:优化向量化模型和检索算法。
  • 上下文验证:对生成的回答进行二次验证。

总结

本文详细介绍了如何在Spring Boot项目中集成Spring AI和Milvus,结合RAG技术构建智能问答系统。通过优化检索和生成过程,可以有效提升回答质量并减少AI幻觉问题。

参考资料

  1. Spring AI官方文档
  2. Milvus官方文档
  3. RAG技术论文
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导仿真实践,利用人工神经网络对复杂的非线性关系进行建模逼近,提升机械臂运动控制的精度效率。同时涵盖了路径规划中的RRT算法B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿高精度轨迹跟踪控制;④结合RRTB样条完成平滑路径规划优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析神经网络训练,注重理论推导仿真实验的结合,以充分理解机械臂控制系统的设计流程优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值