EXAMPLE1
[
[0, 2, -1, 1],
[-2, 0, 3, 1],
[1, -3, 0, 1],
]
双人零和对称博弈(M=−MTM = -M^TM=−MT)的所有纳什均衡都是对称纳什均衡.
maxpminqpMqT=minqmaxppMqT=pMpT=−pMpT=0\max\limits_p \min\limits_q pMq^T = \min\limits_q \max\limits_p pMq^T = pMp^T = -pMp^T = 0pmaxqminpMqT=qminpmaxpMqT=pMpT=−pMpT=0
-
max min 问题如下:
maxpminqpMqT ⟺ maxpmin{pM} ⟺ {maxp,vvpM≽v1p≽0p1T=1\begin{aligned} & \max\limits_p \min\limits_q pMq^T \\ \iff& \max\limits_p \min\{pM\} \\ \iff& \begin{cases} \max\limits_{p,v} v \\ pM \succcurlyeq v1 \\ p \succcurlyeq 0 \\ p1^T = 1 \\ \end{cases} \\ \end{aligned}⟺⟺pmaxqminpMqTpmaxmin{pM}⎩⎨⎧p,vmaxvpM≽v1p≽0p1T=1
⟺ {minp,v−v2p1−p2+v⩽0−2p0+3p2+v⩽0p0−3p1+v⩽0−p0⩽0−p1⩽0−p2⩽0p0+p1+p2=1\iff \begin{cases} & \min\limits_{p,v} -v \\ & \begin{matrix} & 2p_1 & -p_2 & +v &\leqslant &0 \\ -2p_0 & & +3p_2 & +v &\leqslant &0 \\ p_0 & -3p_1 & & +v &\leqslant &0 \\ -p_0 & & & &\leqslant &0 \\ & -p_1 & & &\leqslant &0 \\ & & -p_2 & &\leqslant &0 \\ p_0 & +p_1 & +p_2 & &= &1 \\ \end{matrix} \\ \end{cases}⟺⎩⎨⎧p,vmin−v−2p0p0−p0p02p1−3p1−p1+p1−p2+3p2−p2+p2+v+v+v⩽⩽⩽⩽⩽⩽=0000001
-
max min 问题解得 p∗=[12,16,13]p^*=[\frac{1}{2}, \frac{1}{6}, \frac{1}{3}]p∗=[21,61,31], v∗=0v^*=0v∗=0.
-
min max 问题如下:
minqmaxpqMTpT ⟺ minqmax{qMT} ⟺ {minq,uuqMT≼u1q≽0q1T=1\begin{aligned} & \min\limits_q \max\limits_p qM^Tp^T \\ \iff& \min\limits_q \max\{qM^T\} \\ \iff& \begin{cases} \min\limits_{q, u} u \\ qM^T \preccurlyeq u1 \\ q \succcurlyeq 0 \\ q1^T = 1 \\ \end{cases} \\ \end{aligned}⟺⟺qminpmaxqMTpTqminmax{qMT}⎩⎨⎧q,uminuqMT≼u1q≽0q1T=1
⟺ {minq,uu2q1−q2−u⩽0−2q0+3q2−u⩽0q0−3q1−u⩽0−q0⩽0−q1⩽0−q2⩽0q0+q1+q2=1\iff \begin{cases} & \min\limits_{q,u} u \\ & \begin{matrix} & 2q_1 & -q_2 & -u &\leqslant &0 \\ -2q_0 & & +3q_2 & -u &\leqslant &0 \\ q_0 & -3q_1 & & -u &\leqslant &0 \\ -q_0 & & & &\leqslant &0 \\ & -q_1 & & &\leqslant &0 \\ & & -q_2 & &\leqslant &0 \\ q_0 & +q_1 & +q_2 & &= &1 \\ \end{matrix} \\ \end{cases}⟺⎩⎨⎧q,uminu−2q0q0−q0q02q1−3q1−q1+q1−q2+3q2−q2+q2−u−u−u⩽⩽⩽⩽⩽⩽=0000001
-
min max 问题解得 q∗=[12,16,13]q^*=[\frac{1}{2}, \frac{1}{6}, \frac{1}{3}]q∗=[21,61,31], u∗=0u^*=0u∗=0.
-
结论:
计算机求解结果满足 v∗=u∗v^*=u^*v∗=u∗, 因此 (p∗,q∗)(p^*,q^*)(p∗,q∗) 是一个混合策略纳什均衡.
计算机求解结果满足 p∗=q∗p^*=q^*p∗=q∗, v∗=u∗=0v^*=u^*=0v∗=u∗=0, 与理论分析一致.
具体代码如下:
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
import numpy
import scipy
problem_p_v = {
'c': numpy.array([[0, 0, 0, -1]]),
'A_ub': numpy.array([
[0, 2, -1, 1],
[-2, 0, 3, 1],
[1, -3, 0, 1],
[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
]),
'b_ub': numpy.array([
[0],
[0],
[0],
[0],
[0],
[0],
]),
'A_eq': numpy.array([[1, 1, 1, 0]]),
'b_eq': numpy.array([[1]]),
}
result_p_v = scipy.optimize.linprog(**problem_p_v, bounds=(None, None))
print(result_p_v)
problem_q_u = {
'c': numpy.array([[0, 0, 0, 1]]),
'A_ub': numpy.array([
[0, 2, -1, -1],
[-2, 0, 3, -1],
[1, -3, 0, -1],
[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
]),
'b_ub': numpy.array([
[0],
[0],
[0],
[0],
[0],
[0],
]),
'A_eq': numpy.array([[1, 1, 1, 0]]),
'b_eq': numpy.array([[1]]),
}
result_q_u = scipy.optimize.linprog(**problem_q_u, bounds=(None, None))
print(result_q_u)
EXAMPLE2
[
[1, -2, 6, -4],
[2, -7, 2, 4],
[-3, 4, -4, -3],
[-8, 3, -2, 3],
]
-
max min 问题如下:
maxpminqpMqT ⟺ maxpmin{pM} ⟺ {maxp,vvpM≽v1p≽0p1T=1 ⟺ {minp,v−v[1−MT⋮1−10⋱⋮−10][pTv]≼0[1⋯10][pTv]=[1]\begin{aligned} & \max\limits_p \min\limits_q pMq^T \\ \iff& \max\limits_p \min\{pM\} \\ \iff& \begin{cases} \max\limits_{p,v} v \\ pM \succcurlyeq v1 \\ p \succcurlyeq 0 \\ p1^T = 1 \\ \end{cases} \\ \iff& \begin{cases} \min\limits_{p,v} -v \\ \begin{bmatrix} & & &1 \\ &-M^T & &\vdots \\ & & &1 \\ -1 & & &0 \\ &\ddots & &\vdots \\ & &-1 &0 \\ \end{bmatrix} \begin{bmatrix} \\ p^T \\ \\ v \end{bmatrix} \preccurlyeq 0 \\ \begin{bmatrix} 1 &\cdots &1 &0 \end{bmatrix} \begin{bmatrix} \\ p^T \\ \\ v \end{bmatrix} = [1] \\ \end{cases} \\ \end{aligned}⟺⟺⟺pmaxqminpMqTpmaxmin{pM}⎩⎨⎧p,vmaxvpM≽v1p≽0p1T=1⎩⎨⎧p,vmin−v−1−MT⋱−11⋮10⋮0pTv≼0[1⋯10]pTv=[1]
-
max min 问题解得 p∗=[0.14,0.35,0.51,0]p^*=[0.14,0.35,0.51,0]p∗=[0.14,0.35,0.51,0], v∗=−0.69v^*=-0.69v∗=−0.69.
-
min max 问题如下:
minqmaxpqMTpT ⟺ minqmax{qMT} ⟺ {minq,uuqMT≼u1q≽0q1T=1 ⟺ {minq,uu[−1M⋮−1−10⋱⋮−10][qTu]≼0[1⋯10][qTu]=[1]\begin{aligned} & \min\limits_q \max\limits_p qM^Tp^T \\ \iff& \min\limits_q \max\{qM^T\} \\ \iff& \begin{cases} \min\limits_{q, u} u \\ qM^T \preccurlyeq u1 \\ q \succcurlyeq 0 \\ q1^T = 1 \\ \end{cases} \\ \iff& \begin{cases} \min\limits_{q,u} u \\ \begin{bmatrix} & & &-1 \\ &M & &\vdots \\ & & &-1 \\ -1 & & &0 \\ &\ddots & &\vdots \\ & &-1 &0 \\ \end{bmatrix} \begin{bmatrix} \\ q^T \\ \\ u \end{bmatrix} \preccurlyeq 0 \\ \begin{bmatrix} 1 &\cdots &1 &0 \end{bmatrix} \begin{bmatrix} \\ q^T \\ \\ u \end{bmatrix} = [1] \\ \end{cases} \\ \end{aligned}⟺⟺⟺qminpmaxqMTpTqminmax{qMT}⎩⎨⎧q,uminuqMT≼u1q≽0q1T=1⎩⎨⎧q,uminu−1M⋱−1−1⋮−10⋮0qTu≼0[1⋯10]qTu=[1]
-
min max 问题解得 q∗=[0.53,0.33,0,0.14]q^*=[0.53,0.33,0,0.14]q∗=[0.53,0.33,0,0.14], u∗=−0.69u^*=-0.69u∗=−0.69.
-
结论:
计算机求解结果满足 v∗=u∗v^*=u^*v∗=u∗, 因此 (p∗,q∗)(p^*,q^*)(p∗,q∗) 是一个混合策略纳什均衡.
具体代码如下:
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
import numpy
import scipy
M = numpy.array([
[1, -2, 6, -4],
[2, -7, 2, 4],
[-3, 4, -4, -3],
[-8, 3, -2, 3],
])
problem_p_v = {
'c': numpy.concatenate((numpy.zeros((1, 4)), numpy.array([[-1]])), axis=1),
'A_ub': numpy.concatenate(
(
numpy.concatenate((-M.T, numpy.ones((4, 1))), axis=1),
numpy.concatenate((-numpy.identity(4), numpy.zeros((4, 1))), axis=1),
),
axis=0,
),
'b_ub': numpy.zeros((8, 1)),
'A_eq': numpy.concatenate((numpy.ones((1, 4)), numpy.array([[0]])), axis=1),
'b_eq': numpy.array([[1]]),
}
result_p_v = scipy.optimize.linprog(**problem_p_v, bounds=(None, None))
print(result_p_v)
problem_q_u = {
'c': numpy.concatenate((numpy.zeros((1, 4)), numpy.array([[1]])), axis=1),
'A_ub': numpy.concatenate(
(
numpy.concatenate((M, -numpy.ones((4, 1))), axis=1),
numpy.concatenate((-numpy.identity(4), numpy.zeros((4, 1))), axis=1),
),
axis=0,
),
'b_ub': numpy.zeros((8, 1)),
'A_eq': numpy.concatenate((numpy.ones((1, 4)), numpy.array([[0]])), axis=1),
'b_eq': numpy.array([[1]]),
}
result_q_u = scipy.optimize.linprog(**problem_q_u, bounds=(None, None))
print(result_q_u)