Chiaa

Chia

https://www.chia.net/faq/#faq-1

What is Chia?
Chia was incorporated in August of 2017 to develop an improved blockchain and smart transaction platform. We are building the Chia Network to improve the global financial and payments systems. Chia is the first enterprise-grade digital money. Chia is using the first new Nakamoto consensus algorithm since Bitcoin. Called Proof of Space and Time, it was created by Bram Cohen, the best network protocol engineer alive and the inventor of BitTorrent. Chialisp is Chia’s new smart transaction programming language that is powerful, easy to audit, and secure. Reference smart transactions currently available are: atomic swaps, authorized payees, recoverable wallets, multisig wallets, and rate-limited wallets.

Where can I get answers to questions about running Chia?
You should first read the repository FAQ, check out the wealth of information on the repository wiki and join us on Keybase in the #testnet or #beginner channels. We have also created a good summary of the basics of creating plots for Chia.

What is Proof of Space and Time?

Proof of Space is a cryptographic technique where provers show that they allocate unused hard drive space for storage space. In order to be used as a consensus method, Proof of Space must be tied to Proof of Time. PoT ensures that block times have consistency in the time between them and increases the overall security of the blockchain.

How does Proof of Space and Proof of Time work?

Proof of space can be thought of as a way to prove that you are keeping some storage unused on your hard-disk drive. Users of the Chia blockchain will “seed” unused space on their hard-disk drive by installing software which stores a collection of cryptographic numbers on the disk into “plots.” These users are called “farmers.” When the blockchain broadcasts a challenge for the next block, farmers can scan their plots to see if they have the hash that is closest to the challenge. A farmer’s probability of winning a block is the percentage of the total space that a farmer has compared to the entire network.

Proof of time requires a small period of time to pass between blocks. Proof of time is implemented by a Verifiable Delay Function that takes a certain amount of time to compute, but is very fast to verify. The key idea of a VDF is that they require sequential computation, and since having many parallel machines does not yield any benefit, electricity waste is minimized. There will likely be relatively few VDF servers (“Timelords”), as the fastest one will always finish first and it takes only one fast and fair Timelord on the network to complete a block and move the chain forward.

What is Chialisp?

Chia has a newly developed, innovative blockchain programming language called Chialisp, which is powerful, easy to audit, and secure. Chialisp is a superior on-chain smart transaction development environment that will unlock the security, transparency, and ease of use that cryptocurrencies promise.

https://blog.youkuaiyun.com/little00bee/article/details/105667658

这里是引用

内容概要:本文详细介绍了基于FPGA的144输出通道可切换电压源系统的设计与实现,涵盖系统总体架构、FPGA硬件设计、上位机软件设计以及系统集成方案。系统由上位机控制软件(PC端)、FPGA控制核心和高压输出模块(144通道)三部分组成。FPGA硬件设计部分详细描述了Verilog代码实现,包括PWM生成模块、UART通信模块和温度监控模块。硬件设计说明中提及了FPGA选型、PWM生成方式、通信接口、高压输出模块和保护电路的设计要点。上位机软件采用Python编写,实现了设备连接、命令发送、序列控制等功能,并提供了一个图形用户界面(GUI)用于方便的操作和配置。 适合人群:具备一定硬件设计和编程基础的电子工程师、FPGA开发者及科研人员。 使用场景及目标:①适用于需要精确控制多通道电压输出的实验环境或工业应用场景;②帮助用户理解和掌握FPGA在复杂控制系统中的应用,包括PWM控制、UART通信及多通道信号处理;③为研究人员提供一个可扩展的平台,用于测试和验证不同的电压源控制算法和策略。 阅读建议:由于涉及硬件和软件两方面的内容,建议读者先熟悉FPGA基础知识和Verilog语言,同时具备一定的Python编程经验。在阅读过程中,应结合硬件电路图和代码注释,逐步理解系统的各个组成部分及其相互关系。此外,实际动手搭建和调试该系统将有助于加深对整个设计的理解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值