关于一些工业界Graph Embedding论文的整理
- Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba
- Learning and Transfering IDs Representation in E-commerce
- Session-based Recommendation with Graph Neural Networks
- STAMP:Short-Term Attention/Memory Priority Model for Session-based Recommendation
- Neural Attentive Session-based Recommendation
- Real-time Personalization using Embeddings for Search Ranking at Airbnb
Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba
本篇论文基于Session-based Graph embedding来实现RS。而RS分为两阶段:match和rank,简单的说就是根据user或者query来选出candidate items set,之后给其中每一个item打分来排名发给user从而实现推荐,这篇论文关注的是math阶段的解决方法,考虑的是side info和item embedding。既然是Graph embedding方法,就得有Graph。这里是做推荐,采用的也是已有的Session-based方法,就是根据user交互过的items,在同一个sessi