论文链接:https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16369/16011
发表会议:AAAI 2018
摘要
知识图谱表示学习旨在将实体和关系嵌入到向量空间,同时保留知识图谱的内在结构。传统方法主要基于关系三元组学习知识图谱的嵌入表示。本文认为,知识图谱中的逻辑规则对于表示学习也很有帮助,于是提出了一个新的表示学习模型RUGE (Rule-Guided Embedding)。RUGE的主要特点是,利用从知识图谱自动抽取的规则迭代地预测未标记三元组,并将其加入训练来增强表示学习。
方法介绍
RUGE框架如下图所示。与传统方法不同,该模型除了利用labeled三元组,还同时引入了unlabeled三元组和逻辑规则。RUGE利用自动抽取的规则,生成带有置信度的unlabeled