Pandas笔记11----------Pandas绘图

1.折线图

  • Series折线图
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
s = pd.Series([100,200,300,200,150,100])
s.plot()
plt.show()

  • DataFrame折线图
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = np.random.randint(50,100,size=(5,6))
index = ['1st','2nd','3th','4th','5th']
columns = ['Jeff','Jack','Rose','Lucy','Liy','Bob']
df = pd.DataFrame(data=data,index=index,columns=columns)
print(df)
df.plot()
plt.show

2.条形图和柱状图

  • Series柱状图和条形图
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
s = pd.Series(data=[100,200,300,200])
s.index = ['Lily','Lucy','Jack','Rose']
#两种图形同时打印会重叠在一张图中
s.plot.bar() #柱状图
s.plot.barh() #条形图

柱状图
条形图
  • DataFrame柱状图和条形图
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = np.random.randint(0,100,size=(4,3))
index = list('ABCD')
columns = ['Python','C','Java']
df = pd.DataFrame(data=data,index=index,columns=columns)
df.plot(kind='bar')
df.plot(kind='barh')
柱状图
条形图

2.直方图 

  • 柱高表示数据的频数,柱宽表示各组数据的组距
  • 参数bins:设置直方图方柱的个数上线,值越大柱宽越小,数据分组越细致
  • 参数density:默认值False,值为True时把频数转换为概率
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
s = pd.Series([1,2,2,2,2,2,3,3,4,4,4,5,6,6])
s.plot(kind='hist')
s.plot(kind='hist',bins=5)
无参数

 

带参数bins
带参数density

3.kde图:核密度估计,用于弥补直方图由于参数bins设置的不合理导致的精度缺失问题

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
s = pd.Series([1,2,2,2,2,2,3,3,4,4,4,5,6,6])
s.plot(kind='hist',bins=5)
s.plot(kind='kde')

4.饼图 

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(
    data = np.random.rand(4,2),
    index = list('ABCD'),
    columns = ['Python','Java']
)
df['Python'].plot(kind='pie',autopct='%.1f%%')
#subplots子图
df.plot.pie(subplots=True)
df['Python'].plot(kind='pie',autopct='%.1f%%')标题
df.plot.pie(subplots=True)标题

5.散点图

  • 散点图是观察两个一维数据数列之间的关系,DataFrame对象可用
  • 需要指定x,y参数
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = np.random.normal(size=(1000,2))
df = pd.DataFrame(data=data,columns=list('AB'))
df.plot(kind='scatter',x='A',y='B')

 

6.面积图 

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(data=np.random.rand(10,4),columns=list('ABCD'))
df.plot(kind='area')

7.箱型图

  • 图中每一个箱型图从上到下的横线表示:最大值,75%,50%,25%,最小值
  • 空心圆:异常值,离群点
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(data=np.random.rand(10,4),columns=list('ABCD'))
df.plot(kind='box')

 知识点为听课总结笔记,课程为B站“千锋教育Pandas数据分析从入门到实战,零基础小白保姆级Python数据分析教程”:001_Pandas_Pandas介绍_哔哩哔哩_bilibili

Pandas学习完结撒花!!!!!!!!!!!! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值