Linux内核源码中最常见的数据结构之【list_head】

Linux内核源码中最常见的数据结构之【list_head】

1. 定义

list_head可以说是Linux内核使用的最多的数据结构之一了,它让开发人员能以双向链表的形式快速将当前结构链接起来,同时对链表进行基本操作。其定义如下:

struct list_head {
	struct list_head *next, *prev;
};

使用方法就是将list_head以成员变量的形式添加到其他数据结构中。

在这里插入图片描述

假设现有一群学生在排队

struct student{
    char *name;
    int age;
    struct list_node others;
}

获取同学S其前面一位同学的方式为S->others.next,是不是很简单?

但是你可能会问,S->others.next获取的是前一位同学的others成员变量,那还是不能访问前一位同学自身结构啊?

问得好,我们接着介绍…


#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif

/**
 * container_of - cast a member of a structure out to the containing structure
 * @ptr:	the pointer to the member.
 * @type:	the type of the container struct this is embedded in.
 * @member:	the name of the member within the struct.
 *
 */
#define container_of(ptr, type, member) ({			\
	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
	(type *)( (char *)__mptr - offsetof(type,member) );})

offsetof宏定义,获取TYPE类型结构体中MEMBER成员的偏移量,PS:NULL指针的地址为0x0000

container_of也是Linux内核中常用的宏定义之一,其作用就是通过某个结构体的成员变量获取该结构体本身

  • ptr指向该成员的指针
  • type为包含该成员的结构体类型
  • member为该成员在结构体中的名字

在上述定义中

typeof( ((type *)0)->member )这个语句中,先将0隐式转化为NULL再显式类型转化为type类型,再通过typeof获取type类型结构体中名字叫做member的成员变量的数据类型

const typeof( ((type *)0)->member ) *__mptr 定义了一个member数据类型的指针

(char *)__mptr获取__mptr在内存中的地址

(char *)__mptr - offsetof(type,member)获取该结构体首地址

(type *)( (char *)__mptr - offsetof(type,member) )显式类型转化为type类型,任务完成!

现在通过container_of(S->others.next, struct student, others)就可以获取前一位同学的结构体啦

2. 相关方法

对于双向链表,除了上述基本操作,还包括初始化链表、添加节点、删除节点、更新节点、遍历链表等操作。这些方法也都被定义在内核中。

  1. 初始化链表
//创建头节点
#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list)
{
	list->next = list;
	list->prev = list;
}
  1. 添加节点
/*
* 在两个已知的连续节点之间添加新节点
*/
static inline void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next)
{
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 * 在指定的头节点之后插入新的节点
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}


/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 * 在特定的头节点之前插入新的节点
 * 对用于实现队列非常有用
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}
  1. 删除节点
/*
* 删除两个已知节点之间的节点
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
	next->prev = prev;
	prev->next = next;
}

static inline void __list_del_entry(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
}

static inline void list_del(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	entry->next = LIST_POISON1;
	entry->prev = LIST_POISON2;
}
  1. 更新节点
/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
				struct list_head *new)
{
	new->next = old->next;
	new->next->prev = new;
	new->prev = old->prev;
	new->prev->next = new;
}
  1. 遍历链表
/**
 * list_for_each	-	iterate over a list
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 */
#define list_for_each(pos, head) \
	for (pos = (head)->next; pos != (head); pos = pos->next)


/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop cursor.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 * 使用这个方法你可以在遍历过程中删除当前遍历的元素,而不会影响接下来遍历的进行
 */
#define list_for_each_safe(pos, n, head) \
	for (pos = (head)->next, n = pos->next; pos != (head); \
		pos = n, n = pos->next)

/**
 * list_for_each_entry	-	iterate over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 * 遍历list_node成员所在的结构体类型
 */
#define list_entry(ptr, type, member) \
	container_of(ptr, type, member)

#define list_for_each_entry(pos, head, member)				\
	for (pos = list_entry((head)->next, typeof(*pos), member);	\
	     &pos->member != (head); 	\
	     pos = list_entry(pos->member.next, typeof(*pos), member))

  1. 判断是否是尾节点,判断链表是否为空
/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_last(const struct list_head *list,
				const struct list_head *head)
{
	return list->next == head;
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
	return head->next == head;
}

3. 使用案例

#include <stdio.h>

struct student{
    char* name;
    int age;
    struct list_head others;
};

int main(void)
{
    //学生排队,队列为lines
    LIST_HEAD(lines);
    struct student s1 = {"s1", 10};
    struct student s2 = {"s2", 9};
    struct student s3 = {"s3", 11};

    //将s1加入到队伍中
    list_add_tail(&s1.others, &lines);
    //将s2加入到队伍中
    list_add_tail(&s2.others, &lines);
    //将s3加入到队伍中
    list_add_tail(&s3.others, &lines);
    
    struct student *cursor;
    printf("lines: \n");
    list_for_each_entry(cursor, &lines, others){
        printf("%s -> ", cursor->name);
    }
    printf("\n");

    //s4这个人19岁,不讲武德,插队
    struct student s4 = {"s4", 19};
    list_add(&s4.others, &lines);
    printf("lines: \n");
    list_for_each_entry(cursor, &lines, others){
        printf("%s -> ", cursor->name);
    }
    printf("\n");

    //老师来了,把s4提出队伍
    list_del(&s4.others);
    printf("lines: \n");
    list_for_each_entry(cursor, &lines, others){
        printf("%s -> ", cursor->name);
    }
    printf("\n");

    return 0;
}

输出结果

//三个学生排队
lines: 
s1 -> s2 -> s3 -> 
//s4不讲武德,插队
lines:
s4 -> s1 -> s2 -> s3 ->
//s4被踢出队伍
lines:
s1 -> s2 -> s3 ->

Linux常用数据结构 第二篇,哈希表hlist

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hack Rabbit

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值