51nod 1057 N的阶乘

本文介绍两种计算大数阶乘的方法:一种使用Java的BigInteger类型进行精确计算;另一种采用数组实现高精度计算,适用于处理超出常规整型变量范围的情况。
Input
输入N(1 <= N <= 10000)
Output
输出N的阶乘
Input示例
5
Output示例
120

第一种解法:利用java的BigInteger类型,正常计算阶乘

import java.math.BigInteger;
import java.util.Scanner;


public class answer {
	public static void main(String[] args) {
		Scanner cin=new Scanner(System.in);
		int n, a=1;
		BigInteger ans=BigInteger.valueOf(a);
		n=cin.nextInt();
		while(a<=n){
			ans=ans.multiply(BigInteger.valueOf(a));
			a++;
		}
		System.out.println(ans);
	}
}
第二种解法:利用高精度计算的压位思想
import java.util.Scanner;


public class answer {
	public static void main(String[] args) {
		Scanner cin=new Scanner(System.in);
		int n=cin.nextInt();
		long a[]=new long[1000000];     //数组中每个都是用来保存计算结果
		int m=0;                        //从数组的最低位开始
		a[m]=1;                         //先设数组最低位存放的是0
		for(int i=2;i<=n;i++)  
	    {  
	  
	        long step=0;  				//step用来保存进位
	        for(int j=0;j<=m;j++)  
	        {  
/*当乘积没有大于10000时,不会产生进位,这里m为0,出内循环后不会++m,所以会一直乘下去
 当大于10000时,step大于0,出内循环后++m,这时a[0]存储了除以10000的余数,当下一次进入
 内循环前,step即进位被置0,进入后,内循环从j=0开始,
 第一步是a[j]乘当前的i值加余数,当然,a[0]乘i时,step即进位为0
 第二步是算step即进位,计算结果用于计算下一位
 第三步是计算除以10000的余数,即最新的a[j]
 此后,这样循环,计算到最前面,如果最前又有进位,则出循环后++m,最前面的进位放在最前面的
 a[m]中
 这种算法的思想就是一种10000进制的思想,超过10000进位*/
	           a[j]=a[j]*i+step;        
	           step=a[j]/10000 ;  
	           a[j]%=10000 ;  
	        }  
	        if(step!=0)  
	            a[++m]=step;  
	    }  
		System.out.printf("%d",a[m]);       //最前面直接输出
		for(int i=m-1;i>=0;i--)  
	        System.out.printf("%04d",a[i]); //后面的不足四位要补0
	}
}


Delphi 12.3 作为一款面向 Windows 平台的集成开发环境,由 Embarcadero Technologies 负责其持续演进。该环境以 Object Pascal 语言为核心,并依托 Visual Component Library(VCL)框架,广泛应用于各类桌面软件、数据库系统及企业级解决方案的开发。在此生态中,Excel4Delphi 作为一个重要的社区开源项目,致力于搭建 Delphi 与 Microsoft Excel 之间的高效桥梁,使开发者能够在自研程序中直接调用 Excel 的文档处理、工作表管理、单元格操作及宏执行等功能。 该项目以库文件与组件包的形式提供,开发者将其集成至 Delphi 工程后,即可通过封装良好的接口实现对 Excel 的编程控制。具体功能涵盖创建与编辑工作簿、格式化单元格、批量导入导出数据,乃至执行内置公式与宏指令等高级操作。这一机制显著降低了在财务分析、报表自动生成、数据整理等场景中实现 Excel 功能集成的技术门槛,使开发者无需深入掌握 COM 编程或 Excel 底层 API 即可完成复杂任务。 使用 Excel4Delphi 需具备基础的 Delphi 编程知识,并对 Excel 对象模型有一定理解。实践中需注意不同 Excel 版本间的兼容性,并严格遵循项目文档进行环境配置与依赖部署。此外,操作过程中应遵循文件访问的最佳实践,例如确保目标文件未被独占锁定,并实施完整的异常处理机制,以防数据损毁或程序意外中断。 该项目的持续维护依赖于 Delphi 开发者社区的集体贡献,通过定期更新以适配新版开发环境与 Office 套件,并修复已发现的问题。对于需要深度融合 Excel 功能的 Delphi 应用而言,Excel4Delphi 提供了经过充分测试的可靠代码基础,使开发团队能更专注于业务逻辑与用户体验的优化,从而提升整体开发效率与软件质量。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
题目 51nod 3478 涉及一个矩阵问题,要通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值