use ncnn with pytorch or onnx

Here is a practical guide for converting pytorch model to ncnn

resnet18 is used as the example

pytorch to onnx

The official pytorch tutorial for exporting onnx model

Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX — PyTorch Tutorials 1.1.0 documentation

import torch
import torchvision
import torch.onnx

# An instance of your model
model = torchvision.models.resnet18()

# An example input you would normally provide to your model's forward() method
x = torch.rand(1, 3, 224, 224)

# Export the model
torch_out = torch.onnx._export(model, x, "resnet18.onnx", export_params=True)

simplify onnx model

The exported resnet18.onnx model may contains many redundant operators such as Shape, Gather and Unsqueeze that is not supported in ncnn

Shape not supported yet!
Gather not supported yet!
  # axis=0
Unsqueeze not supported yet!
  # axes 7
Unsqueeze not supported yet!
  # axes 7

Fortunately, daquexian developed a handy tool to eliminate them. cheers!

https://github.com/daquexian/onnx-simplifier

python3 -m onnxsim resnet18.onnx resnet18-sim.onnx

onnx to ncnn

Finally, you can convert the model to ncnn using tools/onnx2ncnn

onnx2ncnn resnet18-sim.onnx resnet18.param resnet18.bin
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值