PC:Inter core(TM)i5-2400 CPU3.10GHz RAM4.00GB
检测图片大小:640*480
加载model:INRIA样本库训练出的单组件8个子部件的model
每次的检测时间会有微小浮动,与电脑CPU状态和图片内容有关:检测时移动鼠标都会对检测时间有很大影响;目标(人)数目不同时,保存检测窗位置画出最终检测窗的运算量会有差别。由于浮动不大,所以我直接取了其中一次,没有做多次平均。
release4:
0)multithreaded convolution using SSE fconvsse.cc Time:1.672259 seconds
1)multithreaded convolution using blas fconvblasMT.cc Time:4.588164 seconds
2)multithreaded convolution without blas fconvMT.cc Time:2.407935 seconds
3)convolution using blas fconvblas.cc Time:7.052188 seconds
4)blas convolution, very compatible fconv.cc Time:4.588164 seconds
release5:
0)multithreaded convolution using SSE and 0)multithreaded convolution
fconvsse.cc and conv_var_dim_MT.cc Time:3.782209 seconds
1)multithreaded convolution and 0)multithreaded convolution
fconv_var_dim_MT.cc and conv_var_dim_MT.cc Time:6.277308 seconds
2)basic convolution, very compatible and 0)multithreaded convolution
conv_var_dim.cc and conv_var_dim_MT.cc Time:15.491376 seconds
0)multithreaded convolution using SSE and 1)single-threaded convolution
fconvsse.cc and conv_var_dim.cc Time:3.598026 seconds
1)multithreaded convolution and 1)multithreaded convolution
fconv_var_dim_MT.cc and conv_var_dim.cc Time:6.285950 seconds
2)basic convolution, very compatible and 1)multithreaded convolution
fconv_var_dim.cc and conv_var_dim.cc Time:15.473099 seconds
5比4的最大改进在训练代码,迭代收敛更快训练时间更短:Training is done in memory;Optimization improvements (faster convergence); Weak-label structural SVM (wl-ssvm)。