绝对震撼,有用的《各图像不变特征性能比较》


下面是转载国外的的一篇文章--主要是当前描述不变特征之间的比较。个人感觉 SURF 从性能和速度上看应该是最好的。。。。。。。下面是英文,耐心看哦,很有参考价值。



Introduction

For this test i have written special test framework, which allows me to easily add the new kind of descriptors and test cases and generate report data in CSV-like format. Than i upload it in Google docs and create this awesome charts. Five quality and one performance test was done for each kind of descriptor.

Test cases

  • Rotation test -  this test shows how the feature descriptor depends on feature orientation.
  • Scaling test -  this test shows how the feature descriptor depends on feature size.
  • Blur test -  this test shows how the feature descriptor is robust against blur.
  • Lighting test -  this test shows how the feature descriptor is robust against lighting.
  • Pattern detection test – this test performs detection of planar object (image) on the real video. In contrast to the synthetic tests, this test gives a real picture of the overall stability of the particular descriptor.
  • Performance test is a measurement of description extraction time.

All quality tests works in similar way. Using a given source image we generate a synthetic test data: transformed images corresponding feature points. The transformation algorithm depends on the particular test. For the rotation test case, it’s the rotation of the source image around it’s center for 360 degrees, for scaling – it’s resizing of image from 0.25X to 2x size of original. Blur test uses gaussian blur with several steps and the lighting test changes the overall picture brightness.

The pattern detection test deserves a special attention. This test is done on very complex and noisy video sequence. So it’s challenging task for any feature descriptor algorithm to demonstrate a good results in this test.

The metric for all quality tests is the percent of correct matches between the source image and the transformed one. Since we use planar object, we can easily select the inliers from all matches using the homography estimation. I use OpenCV’s function cvFindHomography for this. This metric gives very good and stable results. I do no outlier detection of matches before homography estimation because this will affect the results in unexpected way. The matching of descriptors is done via brute-force matching from the OpenCV.

Rotation test

Descriptor's invariance to rotation summary report

In this test i obtain pretty expectable results, because all descriptors are rotation invariant expect the BRIEF. Slight changes in stability can be explained by the feature orientation calculation algorithm and descriptor nature. A detailed study of why the descriptor behaves exactly as it is, takes time and effort. It’s a topic for another article. Maybe later on….

Scaling test

Descriptor's invariance to scaling summary report

SURF and SIFT descriptors demonstrate us very good stability in this test because they do expensive keypoint size calculation. Other descriptors uses fixed-size descriptor and you can see what it leads to. Currently for LAZY descriptor i do not have separate LAZY feature detector (i use ORB detector for tests) but I’m thinking on lightweight feature detector with feature size calculation, because it’s a must-have feature. Actually, scale invariance is much more important rather than precise orientation calculation.

Blur test

Descriptor's invariance to blur summary report

In this test i tried to simulate the motion blur which can occurs if camera moves suddenly. All descriptors demonstrate good results in this test. By “good” I mean that the more blur size is applied the less percent of correct matches is obtained. Which is expected behavior.

Lighting test

Descriptor's invariance to lighting summary report

In lighting test the transformed images differs only in overall image brightness. All kinds of descriptors works well in this case. The major reason is that all descriptors extracted normalized, e.g the norm_2 of the descriptor vector equals 1. This normalization makes descriptor invariant to brightness changes.

Pattern detection on real video

Pattern detection test

Detection of the object on real video is the most complex task since ground truth contains rotation, scaling and motion blur. Also other objects are also present. And finally, it’s not HD quality. These conditions are dictated by the actual conditions of application of computer vision.

As you can see on diagram, the SIFT and SURF descriptors gives the best results, nevertheless they are far away from ideal, it’s quite enough for such challenging video. Unfortunately, scale-covariant descriptors show very bad results in this test because pattern image appears in 1:1 scale only at the beginning of the video (The “spike” near frame 20). On the rest of the video sequence target object moves from the camera back and scale-covariant descriptors can’t handle this situation.

Performance summary

Descriptor extraction time summaryThis chart shows the extraction time for N features. I made Y-axis as logarithm scale to make it more readable. For all descriptor extraction algorithm the extraction time depends on number of features linearly. Local spikes is probably caused by some vector resizing or L2 cache misses. This performance test was done on Mac Book Pro 2.2 with Core 2 Duo 2.13 Ghz.

Further works

Add new quality test cases. One additional test i know for sure – affine transformations. Your ideas for other tests are welcome!

  • Add new kind of descriptors. Definitely will add an A-SIFT implementation.
  • Create an LAZY detector with feature size and orientation estimation.
  • Improve the LAZY descriptor extraction procedure. Expect at least 20% performance gain.
  • Generate matching video for each test to demonstrate the behavior of each descriptor algorithm.
基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值