论文阅读--Conservative Q-Learning for Offline Reinforcement Learning

本文介绍了CQL算法,一种针对离线强化学习的保守策略,通过学习保守的Q函数来缓解数据集与策略之间的分布不匹配。CQL理论保证了策略改进的安全性,并在实验证明中显著优于现有方法,特别适用于复杂多模态数据分布的学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

在强化学习( RL )中有效地利用以前收集的大量数据集是大规模实际应用的关键挑战。离线RL算法承诺从先前收集的静态数据集中学习有效的策略,而无需进一步的交互。然而,在实际应用中,离线RL是一个主要的挑战,标准的离线RL方法可能会由于数据集和学习到的策略之间的分布偏移而导致的过高估计,特别是在复杂和多模态数据分布上的训练时。在本文中,我们提出了保守Q学习( CQL ),旨在通过学习一个保守的Q函数来解决这些限制,使得一个策略在这个Q函数下的期望值低于其真实值。我们从理论上证明了CQL对现行策略的价值产生了一个下界,可以将其纳入到一个具有理论改进保证的政策学习过程中。在实际应用中,CQL通过一个简单的Q值正则化器来增强标准的贝尔曼错误目标,该正则化器在现有的深度Q学习和行动者-评论家实现的基础上更易于实现。在离散和连续控制域上,我们都表明CQL显著优于现有的离线强化学习方法,通常学习策略可以获得2 ~ 5倍的最终回报,特别是在从复杂和多模态数据分布中学习时。

论文概述

本文主要介绍了一个名为Conservative Q-Learning (CQL)的离线强化学习算法,该算法旨在克服现有离线强化学习算法在数据分布与学习策略之间存在差异时可能导致的过度估计问题。CQL通过学习一个保守的Q函数来解决这个问题,从而为离线强化学习提供了一种有效的解决方案。此外,本文还讨论了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值