题意
给一个图,n个节点,m条边,依次给出m条边的信息。然后询问k次,每次给出染色方案,每个节点一个颜色,要求共边的结点的颜色不同,最后输出是否k-coloring图。
思路
用edge数组记录边的端点信息。每次先数color个数,然后遍历每个边看看是否有一个边的两端颜色相同。最后按题目要求输出。
总结
- 仔细读题:
each contains N colors which are represented by non-negative integers in the range of int.
这句话看漏导致初始用的bool st[10001]
去数颜色数。 - 时间复杂度= k * n = 1E6
题解
//23:05
#include<bits/stdc++.h>
using namespace std;
int n, m, k, a, b, col[10001];
struct node{
int a, b;
}edge[10001];
int main(){
cin>>n>>m;
for(int i = 0; i < m; i ++) scanf("%d %d", &edge[i].a, &edge[i].b);
cin>>k;
while(k--){
int cnt = 0;
unordered_map<int, bool> st;
for(int i = 0; i < n; i ++){
scanf("%d", &col[i]);
if(!st[col[i]]){
st[col[i]] = true;
cnt++;
}
}
for(int i = 0; i < m; i ++){
if(col[edge[i].a] == col[edge[i].b]){
puts("No");
break;
}
if(i == m - 1) printf("%d-coloring\n", cnt);
}
}
return 0;
}
题目
A proper vertex coloring is a labeling of the graph’s vertices with colors such that no two vertices sharing the same edge have the same color. A coloring using at most k colors is called a (proper) k-coloring.
Now you are supposed to tell if a given coloring is a proper k-coloring.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 104), being the total numbers of vertices and edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge.
After the graph, a positive integer K (≤ 100) is given, which is the number of colorings you are supposed to check. Then K lines follow, each contains N colors which are represented by non-negative integers in the range of int. The i-th color is the color of the i-th vertex.
Output Specification:
For each coloring, print in a line k-coloring
if it is a proper k
-coloring for some positive k
, or No
if not.
Sample Input:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 0
2 4
4
0 1 0 1 4 1 0 1 3 0
0 1 0 1 4 1 0 1 0 0
8 1 0 1 4 1 0 5 3 0
1 2 3 4 5 6 7 8 8 9
Sample Output:
4-coloring
No
6-coloring
No