spark stramin实时流项目实战 9

本文围绕Spark Streaming整合Flume展开实战。包含两种方式,一是Flume-style Push-based Approach,介绍了Flume Agent编写、启动及本地测试步骤,还有服务器环境联调;二是Pull-based Approach using a Custom Sink,强调先启动flume再启动Spark Streaming应用程序,并给出相关配置和提交命令。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark Streaming整合Flume实战

实战一:Flume-style Push-based Approach

Flume Agent的编写:flume_push_streaming.conf
$FLUME_HOME/conf 下创建

simple-agent.sources = netcat-source
simple-agent.sinks = avro-sink
simple-agent.channels = memory-channel

simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind= hadoop000
simple-agent.sources.netcat-source.port= 44444

simple-agent.sinks.avro-sink.type = avro
simple-agent.sinks.avro-sink.hostname = 192.168.15.130
simple-agent.sinks.avro-sink.port = 41414

simple-agent.channels.memory-channel.type = memory

simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.avro-sink.channel = memory-channel

启动:

flume-ng agent
–name simple-agent
–conf $FLUME_HOME/conf
–conf-file $FLUME_HOME/conf/flume-push-streaming.conf
-Dflume.root.logger=INFO,console

hadoop000是服务器的地址,
local的模式进行 Spark Streming代码的测试 192.168.15.130

本地测试总结:
1)启动saprkstreaming作业
2)启动flume agent
3)通过telnet输入数据,观察idea控制台的输出

Push方式整合之服务器环境联调

打包工程:[hadoop@hadoop000 sparktrain]$ mvn clean package -DskipTests

spark-submit
–class com.imooc.spark.FlumePushWordCount
–master local[2]
–packages org.apache.spark:spark-streaming-flume_2.11:2.2.0
/home/hadoop/lib/sparktrain-1.0.jar
hadoop000 41414

Flume Agent的编写:flume-pull-streaming.conf
$FLUME_HOME/conf 下创建

simple-agent.sources = netcat-source
simple-agent.sinks = spark-sink
simple-agent.channels = memory-channel

simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind= hadoop000
simple-agent.sources.netcat-source.port= 44444

simple-agent.sinks.spark-sink.type = org.apache.spark.streaming.flume.sink.SparkSink
simple-agent.sinks.spark-sink.hostname = hadoop000
simple-agent.sinks.spark-sink.port = 41414

simple-agent.channels.memory-channel.type = memory

simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.avro-sink.channel = memory-channel

spark-submit
–class com.imooc.spark.FlumePushWordCount
–master local[2]
–packages org.apache.spark:spark-streaming-flume_2.11:2.2.0
/home/hadoop/lib/sparktrain-1.0.jar
hadoop000 41414

==>

实战二:Pull-based Approach using a Custom Sink

注意点:先启动flume 后启动Spark Streaming应用程序

simple-agent.sources = netcat-source
simple-agent.sinks = spark-sink
simple-agent.channels = memory-channel

simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind= hadoop000
simple-agent.sources.netcat-source.port= 44444

simple-agent.sinks.spark-sink.type = org.apache.spark.streaming.flume.sink.SparkSink
simple-agent.sinks.spark-sink.hostname = hadoop000
simple-agent.sinks.spark-sink.port = 41414

simple-agent.channels.memory-channel.type = memory

simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.spark-sink.channel = memory-channel

flume-ng agent
–name simple-agent
–conf $FLUME_HOME/conf
–conf-file $FLUME_HOME/conf/flume-pull-streaming.conf
-Dflume.root.logger=INFO,console

打包命令 :[hadoop@hadoop000 sparktrain]$ mvn clean package -DskipTests

提交:

spark-submit
–class com.imooc.spark.FlumePullWordCount
–master local[2]
–packages org.apache.spark:spark-streaming-flume_2.11:2.2.0
/home/hadoop/lib/sparktrain-1.0.jar
hadoop000 41414

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值