Red and Black
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 7 Accepted Submission(s) : 4
Problem Description
There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move only on black tiles.
Write a program to count the number of black tiles which he can reach by repeating the moves described above.
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20. There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows. '.' - a black tile '#' - a red tile '@' - a man on a black tile(appears exactly once in a data set)
Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).
Sample Input
6 9
....#.
.....#
......
......
......
......
......
#@...#
.#..#.
11 9
.#.........
.#.#######.
.#.#.....#.
.#.#.###.#.
.#.#..@#.#.
.#.#####.#.
.#.......#.
.#########.
...........
11 6
..#..#..#..
..#..#..#..
..#..#..###
..#..#..#@.
..#..#..#..
..#..#..#..
7 7
..#.#..
..#.#..
###.###
...@...
###.###
..#.#..
..#.#..
0 0
Sample Output
45
59
6
13
题解:这个题就是用一个简单的搜索,从起点开始进队列,只要是可以走的点都进队列,然后标记为不可走的。如果队列里的点无法再进行向四个方向走就出队列,只要有进入队列的就是可以走的点。最后所有的点出队列。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
struct node
{
int x,y;
};
char cha[25][25];
int dir[4][2]={0,1,1,0,-1,0,0,-1};
int main()
{
int n,m,i,j,sx,sy,c;
while(scanf("%d%d",&n,&m))
{
if(n==0&&m==0)break;
c=1;
for(i=1;i<=m;i++)
{
for(j=1;j<=n;j++)
{
cin>>cha[i][j];
if(cha[i][j]=='@')
{
sx=i;
sy=j;
}
}
}
node d1;
d1.x=sx;
d1.y=sy;
cha[sx][sy]=='#';
queue<node>q;
q.push(d1);
while(!q.empty())
{
node d2;
d2=q.front();
q.pop();
for(i=0;i<4;i++)
{
node d3;
d3.x=d2.x+dir[i][0];
d3.y=d2.y+dir[i][1];
if(cha[d3.x][d3.y]=='.'&&d3.x>0&&d3.x<=m&&d3.y>0&&d3.y<=n)
{
c++;
cha[d3.x][d3.y]='#';
q.push(d3);
}
}
}
cout<<c<<endl;
}
}