广度搜索A - Red and Black
There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can’t move on red tiles, he can move only on black tiles.
Write a program to count the number of black tiles which he can reach by repeating the moves described above.
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20.
There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.
‘.’ - a black tile
‘#’ - a red tile
‘@’ - a man on a black tile(appears exactly once in a data set)
The end of the input is indicated by a line consisting of two zeros.
Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).
Sample Input
6 9
…#.
…#
…
…
…
…
…
#@…#
.#…#.
11 9
.#…
.#.#######.
.#.#…#.
.#.#.###.#.
.#.#…@#.#.
.#.#####.#.
.#…#.
.#########.
…
11 6
…#…#…#…
…#…#…#…
…#…#…###
…#…#…#@.
…#…#…#…
…#…#…#…
7 7
…#.#…
…#.#…
###.###
…@…
###.###
…#.#…
…#.#…
0 0
Sample Output
45
59
6
13
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include <queue>
#include <stack>
using namespace std;
int n, m;
char s[22][22];
int x, y;
int ans;
int vis[22][22];
int judge(int x, int y) {
if (x < 1 || x > m || y < 1 || y > n)
return 0;
return 1;
}
void bfs(int x, int y) {
if (vis[x][y] == 1 || !judge(x, y) || s[x][y] == '#')
return;
vis[x][y] = 1;
ans++;
bfs(x + 1, y);
bfs(x - 1, y);
bfs(x, y + 1);
bfs(x, y - 1);
}
int main() {
while (cin >> n >> m) {
ans = 0;
memset(vis, 0 ,sizeof vis);
if (n == 0 && m == 0)
break;
getchar();
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
scanf("%c", &s[i][j]);
if (s[i][j] == '@') {
x = i;
y = j;
}
}
getchar();
}
//for (int i = 1; i <= m; i++) {
// for (int j = 1; j <= n; j++) {
// cout << s[i][j];
// }
// cout << '\n';
//}
bfs(x, y);
cout << ans << '\n';
}
return 0;
}