problem:
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area = 10
unit.
For example,
Given height = [2,1,5,6,2,3]
,
return 10
.
thinking:
(1)最先想到暴力破解,两次遍历,记录最大面积。提交发现超时了。
(2)http://blog.youkuaiyun.com/doc_sgl/article/details/11805519 给出了一个用stack实现的O(n)算法,很高效。
大致思想是:stack里面只存放height单调递增的索引,最大矩形最可能出现在这几列中
code:
暴力破解: 提交 TLE
class Solution {
public:
int largestRectangleArea(vector<int> &height) {
int n=height.size();
if(n==0)
return 0;
if(n<2)
return height[0];
int area=height[0];
int index=0;
for(int i=1;i<n;i++)
{
index=height[i];
for(int j=i;j>=0;j--)
{
index=min(index,height[j]);
area=max(area,index*(i-j+1));
}
}
return area;
}
};
借助stack O(N)算法
class Solution {
public:
int Max(int a, int b){return a > b ? a : b;}
int largestRectangleArea(vector<int> &height) {
height.push_back(0);
stack<int> stk;
int i = 0;
int maxArea = 0;
while(i < height.size()){
if(stk.empty() || height[stk.top()] <= height[i]){
stk.push(i++);
}else {
int t = stk.top();
stk.pop();
maxArea = Max(maxArea, height[t] * (stk.empty() ? i : i - stk.top() - 1));
}
}
return maxArea;
}
};