KNN算是机器学习入门算法中比较容易理解的了,要注意和K-means的一些区别
KNN |
K-Means |
1.KNN是分类算法
2.监督学习 3.喂给它的数据集是带label的数据,已经是完全正确的数据 | 1.K-Means是聚类算法
2.非监督学习 3.喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 |
没有明显的前期训练过程,属于memory-based learning | 有明显的前期训练过程 |
K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label设为c | K的含义:K是人工固定好的数字,假设数据集合可以分为K个簇,由于是依靠人工定好,需要一点先验知识 |
python简单实现
import numpy as np
from math import sqrt
from collections import Counter
from sklearn.metrics import accuracy_score
class kNNClassifier:
def __init__(self, k):
"""初始化kNN分类器"""
assert k >= 1,"k must be valid"
self.k = k
#前面加_的是私有变量,不能修改
self._X_train = None
self._y_train = None
def fit(self, X_train, y_train):
"""根据训练数据集X_train和y_train训练kNN分类器"""
assert X_train.shape[0] == y_train.shape[0],\
"the size of X_train must be equal to the size of y_train"
assert self.k <= X_train.shape[0],\
"the size of X_train must be at least k"
self._X_train = X_train
self._y_train = y_train
return self
def predict(self, X_predict):
"""给定待预测数据集X_predict.返回表示X_predict的结果向量"""
assert self._X_train is not None and self._y_train is not None,\
"must fit before predict"
assert X_predict.shape[1] == self._X_train.shape[1],\
"the feature number of X_predict must be equal to X_train"
y_predict = [self._predict(x) for x in X_predict]
return np.array(y_predict)
def _predict(self, x):
"""给定单个待预测数据x,返回x的预测结果值"""
assert x.shape[0] == self._X_train.shape[1],\
"the feature number of x must be equal to X_train"
distance = [sqrt(np.sum((x_train - x)**2))
for x_train in self._X_train]
nearest = np.argsort(distance)
topK_y = [self._y_train[i] for i in nearest[:self.k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0]
def score(self,X_test, y_test):
"""根据测试数据集X_test 和 y_test 确定当前模型的准确度"""
y_predict = self.predict(X_test)
return accuracy_score(y_test, y_predict)
def __repr__(self):
return "KNN(k=%d)"%self.k