Hive数据仓库——函数
文章目录
- Hive数据仓库——函数
-
-
-
- Hive 常用函数
- Hive 中的wordCount
- Hive 开窗函数
-
- 测试数据
- 建表语句
- row_number:无并列排名
- dense_rank:有并列排名,并且依次递增
- rank:有并列排名,不依次递增
- percent_rank:(rank的结果-1)/(分区内数据的个数-1)
- cume_dist:计算某个窗口或分区中某个值的累积分布。
- NTILE(n):对分区内数据再分成n组,然后打上组号
- max、min、avg、count、sum:基于每个partition分区内的数据做对应的计算
- 窗口帧:用于从分区中选择指定的多条记录,供窗口函数处理
- LAG(col,n):往前第n行数据
- LEAD(col,n):往后第n行数据
- FIRST_VALUE:取分组内排序后,截止到当前行,第一个值
- LAST_VALUE:取分组内排序后,截止到当前行,最后一个值,对于并列的排名,取最后一个
- Hive 行转列
- Hive 列转行
- Hive自定义函数UserDefineFunction
- Hive Shell
- 连续登陆问题
-
-
Hive 常用函数
关系运算
// 等值比较 = == <=>
// 不等值比较 != <>
// 区间比较: select * from default.students where id between 1500100001 and 1500100010;
// 空值/非空值判断:is null、is not null、nvl()、isnull()
// like、rlike、regexp用法
数值计算
取整函数(四舍五入):round
向上取整:ceil
向下取整:floor
条件函数
- if: if(表达式,如果表达式成立的返回值,如果表达式不成立的返回值)
select if(1>0,1,0);
select if(1>0,if(-1>0,-1,1),0);
select score,if(score>120,'优秀',if(score>100,'良好',if(score>90,'及格','不及格'))) as pingfen from score limit 20;
- COALESCE
select COALESCE(null,'1','2'); // 1 从左往右 一次匹配 直到非空为止
select COALESCE('1',null,'2'); // 1
- case when
select score
,case when score>120 then '优秀'
when score>100 then '良好'
when score>90 then '及格'
else '不及格'
end as pingfen
from default.score limit 20;
select name
,case name when "施笑槐" then "槐ge"
when "吕金鹏" then "鹏ge"
when "单乐蕊" then "蕊jie"
else "算了不叫了"
end as nickname
from default.students limit 10;
注意条件的顺序
日期函数
select from_unixtime(1610611142,'YYYY/MM/dd HH:mm:ss');
select from_unixtime(unix_timestamp(),'YYYY/MM/dd HH:mm:ss');
// '2021年01月14日' -> '2021-01-14'
select from_unixtime(unix_timestamp('2021年01月14日','yyyy年MM月dd日'),'yyyy-MM-dd');
// "04牛2021数加16逼" -> "2021/04/16"
select from_unixtime(unix_timestamp("04牛2021数加16逼","MM牛yyyy数加dd逼"),"yyyy/MM/dd");
字符串函数
concat('123','456'); // 123456
concat('123','456',null); // NULL
select concat_ws('#','a','b','c'); // a#b#c
select concat_ws('#','a','b','c',NULL); // a#b#c 可以指定分隔符,并且会自动忽略NULL
select concat_ws("|",cast(id as string),name,cast(age as string),gender,clazz) from students limit 10;
select substring("abcdefg",1); // abcdefg HQL中涉及到位置的时候 是从1开始计数
// '2021/01/14' -> '2021-01-14'
select concat_ws("-",substring('2021/01/14',1,4),substring('2021/01/14',6,2),substring('2021/01/14',9,2));
// 建议使用日期函数去做日期
select from_unixtime(unix_timestamp('2021/01/14','yyyy/MM/dd'),'yyyy-MM-dd');
select split("abcde,fgh",","); // ["abcde","fgh"]
select split("a,b,c,d,e,f",",")[2]; // c
select explode(split("abcde,fgh",",")); // abcde
// fgh
// 解析json格式的数据
select get_json_object('{"name":"zhangsan","age":18,"score":[{"course_name":"math","score":100},{"course_name":"english","score":60}]}',"$.score[0].score"); // 100
Hive 中的wordCount
create table words(
words string
)row format delimited fields terminated by '|';
// 数据
hello,java,hello,java,scala,python
hbase,hadoop,hadoop,hdfs,hive,hive
hbase,hadoop,hadoop,hdfs,hive,hive
select word,count(*) from (select explode(split(words,',')) word from words) a group by a.word;
// 结果
hadoop 4
hbase 2
hdfs 2
hello 2
hive 4
java 2
python 1
scala 1
Hive 开窗函数
好像给每一份数据 开一扇窗户 所以叫开窗函数
在sql中有一类函数叫做聚合函数,例如sum()、avg()、max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的.但是有时我们想要既显示聚集前的数据,又要显示聚集后的数据,这时我们便引入了窗口函数.
测试数据
111,69,class1,department1
112,80,class1,department1
113,74,class1,department1
114,94,class1,department1
115,93,class1,department1
121,74,class2,department1
122,86,class2,department1
123,78,class2,department1
124,70,class2,department1
211,93,class1,department2
212,83,class1,department2
213,94,class1,department2
214,94,class1,department2
215,82,class1,department2
216,74,class1,department2
221,99,class2,department2
222,78,class2,department2
223,74,class2,department2
224,80,class2,department2
225,85,class2,department2
建表语句
create table new_score(
id int
,score int
,clazz string
,department string
) row format delimited fields terminated by ",";
row_number:无并列排名
- 用法: select xxxx, row_number() over(partition by 分组字段 order by 排序字段 desc) as rn from tb group by xxxx
dense_rank:有并列排名,并且依次递增
rank:有并列排名,不依次递增
percent_rank:(rank的结果-1)/(分区内数据的个数-1)
cume_dist:计算某个窗口或分区中某个值的累积分布。
假定升序排序,则使用以下公式确定累积分布: 小于等于当前值x的行数 / 窗口或partition分区内的总行数。其中,x 等于 order by 子句中指定的列的当前行中的值。
NTILE(n):对分区内数据再分成n组,然后打上组号
max、min、avg、count、sum:基于每个partition分区内的数据做对应的计算
窗口帧:用于从分区中选择指定的多条记录,供窗口函数处理
Hive 提供了两种定义窗口帧的形式:
ROWS
和RANGE
。两种类型都需要配置上界和下界。例如,ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
表示选择分区起始记录到当前记录的所有行;SUM(close) RANGE BETWEEN 100 PRECEDING AND 200 FOLLOWING
则通过 字段差值 来进行选择。如当前行的close
字段值是200
,那么这个窗口帧的定义就会选择分区中close
字段值落在100
至400
区间的记录。以下是所有可能的窗口帧定义组合。如果没有定义窗口帧,则默认为RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
。只能运用在max、min、avg、count、sum、FIRST_VALUE、LAST_VALUE这几个窗口函数上
(ROWS | RANGE) BETWEEN (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING | CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING) (ROWS | RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING) (ROWS | RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED | [num]) FOLLOWING range between 3 PRECEDING and 11 FOLLOWING
SELECT id ,score ,clazz ,SUM(score) OVER w as sum_w ,round(avg(score) OVER w,3) as avg_w ,count(score) OVER w as cnt_w FROM new_score WINDOW w AS (PARTITION BY clazz ORDER BY score rows between 2 PRECEDING and 2 FOLLOWING);
111 69 class1 217 72.333 3 113 74 class1 297 74.25 4 216 74 class1 379 75.8 5 112 80 class1 393 78.6 5 215 82 class1 412 82.4 5 212 83 class1 431 86.2 5 211 93 class1 445 89.0 5 115 93 class1 457 91.4 5 213 94 class1 468 93.6 5 114 94 class1 375 93.75 4 214 94 class1 282 94.0 3 124 70 class2 218 72.667 3 121 74 class2 296 74.0 4 223 74 class2 374 74.8 5 222 78 class2 384 76.8 5 123 78 class2 39