Bag-of-Features Descriptor on SIFT ORB SURF (BoF-SIFT)

本文介绍如何使用尺度不变特征变换(SIFT)提取图像特征,并构建基于SIFT特征的Bag of Features(BoF)模型。首先从大量图像中提取SIFT特征点并进行聚类,得到视觉词汇表;然后利用该词汇表为特定图像创建BoF描述符。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


参考:http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O


SIFT - Scale Invariant Feature Transform


Bag-of_Features with SIFT

Let's see how can we build BoF with SIFT features.

  • 1. Obtain the set of bags of features.
    1. Select a large set of images.
    2. Extract the SIFT feature points of all the images in the set and obtain the SIFT descriptor for each feature point that is extracted from each image.
    3. Cluster the set of feature descriptors for the amount of bags we defined and train the bags with clustered feature descriptors (we can use the K-Means algorithm).
    4. Obtain the visual vocabulary.
  • 2. Obtain the BoF descriptor for given image/video frame.
    1. Extract SIFT feature points of the given image.
    2. Obtain SIFT descriptor for each feature point.
    3. Match the feature descriptors with the vocabulary we created in the first step
    4. Build the histogram.

The following image shows the above two steps clearly. (The image taken from http://www.sccs.swarthmore.edu/users/09/btomasi1/tagging-products.html)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小新识图

你的鼓励是我最大的分享动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值