快速幂

快速幂的目的:

做到快速求幂。假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别。如果n非常大时,就会超时。而快速幂的时间复杂度为O(logn)。


快速幂的原理:

假设我们要求a^b,其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b==11时,

11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1, 11的二进制是1011,因此a¹¹可以转化为算 a^(2^0)*a^(2^1)*a^(2^3),从而可以将原来计算11次转为现在算三次。


由于是二进制,很自然地想到用位运算这个强大的工具: &  和 >>  。
 
&运算通常用于二进制取位操作,例如一个数 & 1 的结果就是取二进制的最末位。同时还可以判断奇偶,x&1==0为偶,x&1==1为奇。>>运算则是去掉二进制最后一位。


实现代码:

int poww(int a,int b){
    int ans=1,base=a;
    while(b!=0){
        if(b&1!=0)
          ans*=base;
        base*=base;
        b>>=1;
  }
    return ans;
}

以b=11为例,b=1011,二进制从右向左算,但乘出来的顺序是 a^(2^0)*a^(2^1)*a^(2^3),是从左向右的。
我们不断的让base*=base目的即是累乘,以便随时对ans做出贡献。
base*base==base^2,下一步再乘,就是base^2*base^2==base^4,然后同理  base^4*base4=base^8,指数正是 2^i 。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值