选快希堆不稳(是不稳定的排序),
堆归选基不变(运行时间不发生变化,与初始状态无关)
插入排序
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* sortArray(int* nums, int numsSize, int* returnSize){
for (int i = 1, j; i < numsSize; i++) {
int temp = nums[i];
for (j = i - 1; j >= 0 && temp < nums[j]; j--) {
nums[j+1] = nums[j];
}
nums[j+1] = temp;
}
*returnSize = numsSize;
return nums;
}
选择排序
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* sortArray(int* nums, int numsSize, int* returnSize){
for (int i = 0, j; i < numsSize; i++) {
int min_pos = i;
for (int j = i+1; j < numsSize; j++) {
if (nums[j] < nums[min_pos]) {
min_pos = j;
}
}
int temp = nums[i];
nums[i] = nums[min_pos];
nums[min_pos] = temp;
}
*returnSize = numsSize;
return nums;
}
冒泡排序(优化可在第一层循环内检查是否发生交换,所以运行时间与初始状态有关)
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* sortArray(int* nums, int numsSize, int* returnSize){
for (int i = 0, j; i < numsSize; i++) {
for (int j = 0; j < numsSize - 1 - i; j++) {
if (nums[j] > nums[j+1]) {
int temp = nums[j];
nums[j] = nums[j+1];
nums[j+1] = temp;
}
}
}
*returnSize = numsSize;
return nums;
}
希尔排序
基数排序
快速排序
最理想时间复杂度O(nlogn),最坏时间复杂度O(n^2),实际应用中,快速排序的平均时间复杂度为O(nlogn)
#include<iostream>
#include<algorithm>
using namespace std;
int a[105] = {3,5,7,9,2,68,48,6,59,18};
void quicksort(int left,int right)
{
if(left > right)//递归终止条件
return;
int i = left;
int j = right;
while(i < j)
{
while(i < j && a[j] >= a[left])
j--;
while(i < j && a[i] <= a[left])
i++;
if(i < j)
swap(a[i],a[j]);
}
swap(a[left],a[i]);//基准归位
quicksort(left,i-1);
quicksort(i+1,right);
}
int main()
{
quicksort(0,9);
for(int i = 0;i < 10;i++)
cout<<a[i]<<endl;
}
寻找第k小元素
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <utility>
#include <vector>
using namespace std;
int a[105] = {3,5,7,9,2,68,48,6,59,18};
int findkth(int l,int r,int k)
{
if(l > r)
return -1;
int i = l, j = r;
while(i < j)
{
while(i < j && a[j] >= a[l])
j--;
while(i < j && a[i] <= a[l])
i++;
if(i < j)
swap(a[i],a[j]);
}
swap(a[i],a[l]);
if(i == k-1)
return a[i];
else if(i > k-1)
return findkth(l,i-1,k);
else
return findkth(i+1,r,k);
}
int main()
{
printf("%d\n",findkth(0,6,3));
}
优化极端的情况一个指针不动时间复杂度会退化成 O(n^2)
- 基本有序的情况时选择了最值,所以可以随机选择中轴
- 所有的元素都相同的情况,可以去掉 a[i],a[j] 等于比较,逐步逼近中轴线
void qsort(vector<int>& nums, int left, int right) {
if (left > right) {
return;
}
int index = rand() % (right - left + 1) + left; // 随机索引
swap(nums[right], nums[index]); // 使用最右侧元素作为pivot
int i = left, j = right - 1, pivot = nums[right];
while (i <= j) {
while (i <= j and nums[i] < pivot)i++;
while (i <= j and nums[j] > pivot)j--;
if (i <= j)
swap(nums[i++], nums[j--]);
}
swap(nums[right], nums[i]); // i的位置就是pivot的位置
qsort(nums, left, i - 1);
qsort(nums, i + 1, right);
}
int quick_sort(vector<int> &nums, int left, int right, int k) {
if (left > right) {
return -1;
}
int i = left, j = right-1;
int index = rand() % (right - left + 1) + left;
swap(nums[right], nums[index]);
while (i <= j) {
while (i <= j && nums[i] < nums[right]) {
i++;
}
while (i <= j && nums[j] > nums[right]) {
j--;
}
if (i <= j) {
swap(nums[i++], nums[j--]);
}
}
swap(nums[i], nums[right]);
if (i == k-1) {
return nums[i];
} else if (i > k-1) {
return quick_sort(nums, left, i-1, k);
} else {
return quick_sort(nums, i+1, right, k);
}
}
归并排序
时间复杂度O(nlogn)
#include<iostream>
#include<algorithm>
using namespace std;
int a[105] = {3,5,7,9,2,68,48,6,59,18},b[105];
void mergesort(int *a,int left,int right,int *T)
{
if(right - left > 1)
{
int mid = left + (right-left) / 2;
int i = left,j = mid,k = left;
mergesort(a,left,mid,T);
mergesort(a,mid,right,T);
while(i < mid || j < right)
{
if(j >= right || (i < mid && a[i] <= a[j]))
T[k++] = a[i++];
else
T[k++] = a[j++];
}
for(int i = left;i < right;i++)
a[i] = T[i];
}
}
int main()
{
mergesort(a,0,10,b);
for(int i = 0;i < 10;i++)
cout<<a[i]<<endl;
}
#include<iostream>
#include<algorithm>
using namespace std;
int a[105] = {3,5,7,9,2,68,48,6,59,18},b[105];
void mergesort(int *a,int left,int right,int *T)
{
if(left >= right)
return;
int mid = left + (right-left) / 2;
int i = left,j = mid+1,k = left;
mergesort(a,left,mid,T);
mergesort(a,mid+1,right,T);
while(i <= mid && j <= right)
{
if(a[i] <= a[j])
T[k++] = a[i++];
else
T[k++] = a[j++];
}
while(i <= mid) T[k++] = a[i++];
while(j <= right) T[k++] = a[j++];
for(int i = left;i <= right;i++)
a[i] = T[i];
}
int main()
{
mergesort(a,0,9,b);
for(int i = 0;i < 10;i++)
cout<<a[i]<<endl;
}
堆排序
#include<bits/stdc++.h>
using namespace std;
int a[105] = {3,5,7,9,2,68,48,6,59,18};
void adjust(int len,int index)
{
int left = index*2+1;
int right = index*2+2;
int maxn = index;//最大数的下标
if(left < len && a[left] > a[maxn])
maxn = left;
if(right < len && a[right] > a[maxn])
maxn = right;
if(maxn != index)//有更新
{
swap(a[maxn],a[index]);
adjust(len,maxn);
}
}
void heap_sort(int n)//最大堆
{
for(int i = n/2 - 1;i >= 0;i--)//对每一个非也叶节点进行堆调整
adjust(n,i);
for(int i = n-1;i >= 1;i--)
{
swap(a[0],a[i]);//将当前最大的放到数组末尾
adjust(i,0);//对未排序的部分继续堆排序
}
}
int main()
{
heap_sort(10);
for(int i = 0;i < 10;i++)
cout<<a[i]<<endl;
}