基于智能手机的行人惯性追踪数据集模型与部署

论文《基于智能手机的行人惯性追踪:数据集、模型和部署》介绍了利用智能手机IMU数据进行行人追踪的系统。通过创建SIMD数据集,采用TCN模型进行实时追踪,结合线性拟合校正轨迹,并在智能手机上使用Deeplearning4j框架进行本地微调和部署,提高了模型的精度和适应性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文总结

这篇《 Smartphone-based Pedestrian Inertial Tracking: Dataset, Model, and Deployment 》论文介绍了一种基于智能手机惯性测量单元(IMU)的行人追踪和定位系统。主要内容和贡献如下:

  1. 数据集和实验设计:作者开发了一个智能手机惯性测量数据集(SIMD),包含超过4500条步行轨迹,涵盖了约190小时的行走时间和700多公里的总行程。数据集覆盖了4个城市、12种室内外场景、7种手机姿态,并由150多名志愿者使用他们的智能手机收集数据。
  2. 实时追踪模型:论文采用了一种轻量级的深度神经网络(DNN)框架——时间卷积网络(TCN),有效地建模长期序列数据,并且容易在边缘设备上部署。作者从原始IMU读数中提取运动特征,包括四个时域特征(最大值、最小值、平均值和标准差)和六个频域特征(平均值、标准差、信息熵、能量、偏度和峰度)。TCN模型由七层全连接层和三个TCN残差块组成,使用因果卷积和扩张因子来增加模型的感受野。
  3. 方向估计:为了估计行人的朝向变化,论文通过将三轴陀螺仪的读数投影到平面姿态上,并积分z轴的角速率,来生成表示行人朝向变化的平面表示。
  4. 轨迹校正:由于长期积分陀螺仪读数可能导致较大的累积误差,论文探索了一种线性拟合算法来校正轨迹。这包括识别转角、将轨迹分割为段落,并对每个段落进行最小二乘法拟合以平滑轨迹点和去除离群点。
  5. 模型定制:为了适应不同用户的使用习惯、传感器类
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员石磊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值