下面我们对编号小于SIGRTMIN的信号进行讨论。
1~15号信号为常用信号
本信号在用户终端连接(正常或非正常)结束时发出, 通常是在终端的控制进程结束时, 通知同一session内的各个作业, 这时它们与控制终端不再关联。
登录Linux时,系统会分配给登录用户一个终端(Session)。在这个终端运行的所有程序,包括前台进程组和后台进程组,一般都属于这个Session。当 用户退出Linux登录时,前台进程组和后台有对终端输出的进程将会收到SIGHUP信号 。这个信号的 默认操作为终止进程 ,因此前台进程组和后台有终端输出的进程就会中止。不过可以捕获这个信号,比如wget能捕获SIGHUP信号,并忽略它,这样就算退出了Linux登录,wget也能继续下载。
此外,对于与终端脱离关系的守护进程,这个信号用于通知它重新读取配置文件。
2) SIGINT
程序终止(interrupt)信号, 在用户键入INTR字符(通常是Ctrl-C)时发出,用于通知前台进程组终止进程。
3) SIGQUIT
和SIGINT类似, 但由QUIT字符( 通常是Ctrl-\ )来控制. 进程在因收到SIGQUIT退出时会产生core文件, 在这个意义上类似于一个程序错误信号。
4) SIGILL
执行了非法指令. 通常是因为可执行文件本身出现错误, 或者试图执行数据段. 堆栈溢出时也有可能产生这个信号。
5) SIGTRAP
由断点指令或其它trap指令产生. 由debugger使用。
6) SIGABRT
调用abort函数生成的信号。
7) SIGBUS
非法地址, 包括内存地址对齐(alignment)出错。比如访问一个四个字长的整数, 但其地址不是4的倍数。它与SIGSEGV的区别在于后者是由于对合法存储地址的非法访问触发的(如访问不属于自己存储空间或只读存储空间)。
8) SIGFPE
在发生致命的算术运算错误时发出. 不仅包括浮点运算错误, 还包括溢出及除数为0等其它所有的算术的错误。
9) SIGKILL
用来立即结束程序的运行. 本信号不能被阻塞、处理和忽略 。如果管理员发现某个进程终止不了,可尝试发送这个信号。
10) SIGUSR1
留给用户使用
11) SIGSEGV
试图访问未分配给自己的内存, 或试图往没有写权限的内存地址写数据.
12) SIGUSR2
留给用户使用
13) SIGPIPE
管道破裂。这个信号通常在进程间通信产生,比如采用FIFO(管道)通信的两个进程,读管道没打开或者意外终止就往管道写,写进程会收到SIGPIPE信号。此外用Socket通信的两个进程,写进程在写Socket的时候,读进程已经终止。
14) SIGALRM
时钟定时信号, 计算的是实际的时间或时钟时间. alarm函数使用该信号.
15) SIGTERM
程序结束(terminate)信号, 与SIGKILL不同的是该信号可以被阻塞和处理 。通常用来要求程序自己正常退出,shell命令kill缺省产生这个信号。如果进程终止不了,我们才会尝试SIGKILL。
17) SIGCHLD
子进程结束时, 父进程会收到这个信号。
如果父进程没有处理这个信号,也没有等待(wait)子进程,子进程虽然终止,但是还会在内核进程表中占有表项,这时的子进程称为僵尸进程。这种情况我们应该避免(父进程或者忽略SIGCHILD信号,或者捕捉它,或者wait它派生的子进程,或者父进程先终止,这时子进程的终止自动由init进程来接管)。
18) SIGCONT
让一个停止(stopped)的进程继续执行. 本信号不能被阻塞. 可以用一个handler来让程序在由stopped状态变为继续执行时完成特定的工作. 例如, 重新显示提示符
19) SIGSTOP
停止(stopped)进程的执行. 注意它和terminate以及interrupt的区别:该进程还未结束, 只是暂停执行. 本信号不能被阻塞, 处理或忽略.
20) SIGTSTP
停止进程的运行, 但该信号可以被处理和忽略. 用户键入SUSP字符时(通常是Ctrl-Z)发出这个信号
21) SIGTTIN
当后台作业要从用户终端读数据时, 该作业中的所有进程会收到SIGTTIN信号. 缺省时这些进程会停止执行.
22) SIGTTOU
类似于SIGTTIN, 但在写终端(或修改终端模式)时收到.
23) SIGURG
有"紧急"数据或out-of-band数据到达socket时产生.
24) SIGXCPU
超过CPU时间资源限制. 这个限制可以由getrlimit/setrlimit来读取/改变。
25) SIGXFSZ
当进程企图扩大文件以至于超过文件大小资源限制。
26) SIGVTALRM
虚拟时钟信号. 类似于SIGALRM, 但是计算的是该进程占用的CPU时间.
27) SIGPROF
类似于SIGALRM/SIGVTALRM, 但包括该进程用的CPU时间以及系统调用的时间.
28) SIGWINCH
窗口大小改变时发出.
29) SIGIO
文件描述符准备就绪, 可以开始进行输入/输出操作.
30) SIGPWR
Power failure
31) SIGSYS
非法的系统调用。
在以上列出的信号中,程序不可捕获、阻塞或忽略的信号有:SIGKILL,SIGSTOP
不能恢复至默认动作的信号有:SIGILL,SIGTRAP
默认会导致进程流产的信号有:SIGABRT,SIGBUS,SIGFPE,SIGILL,SIGIOT,SIGQUIT,SIGSEGV,SIGTRAP,SIGXCPU,SIGXFSZ
默认会导致进程退出的信号有:SIGALRM,SIGHUP,SIGINT,SIGKILL,SIGPIPE,SIGPOLL,SIGPROF,SIGSYS,SIGTERM,SIGUSR1,SIGUSR2,SIGVTALRM
默认会导致进程停止的信号有:SIGSTOP,SIGTSTP,SIGTTIN,SIGTTOU
默认进程忽略的信号有:SIGCHLD,SIGPWR,SIGURG,SIGWINCH
此外,SIGIO在SVR4是退出,在4.3BSD中是忽略;SIGCONT在进程挂起时是继续,否则是忽略,不能被阻塞
1. 程序错误:除零,非法内存访问…
2. 外部信号:终端Ctrl-C产生SGINT信号,定时器到期产生SIGALRM…
3. 显示请求:kill函数允许进程发送任何信号给其他进程或进程组。
信号生成既可以是同步的(信号与程序中的某个具体操作相关并在那个操作同时产生),也可以是异步的。通常程序错误生成信号为同步的,进程显式请求给自己的信号也是同步的。
外部事件总是异步的,来自其他进程的显示请求也是异步的。
信号发生时,我们可以告诉unix内核采取下面三种动作中的任一种:
1. 忽略信号:大部分信号可被忽略,除SIGSTOP和SIGKILL信号外(这是超级用户杀掉或停掉任意进程的手段)。
2. 捕获信号:注册信号处理函数,它对产生的特定信号做处理。
3. 让信号默认动作起作用:unix内核定义的默认动作,有5种情况:
a) 流产abort:终止进程并产生core文件。
b) 终止stop:终止进程但不生成core文件。
c) 忽略:忽略信号。
d) 挂起suspend:挂起进程。
e) 继续continue:若进程是挂起的,则resume进程,否则忽略此信号。
任意时刻,进程可以为信号指定动作。
信号处理涉及两个过程,生成与交付。
信号生成出现在事件发生时,此时内核检查接收进程的相关数据结构,此结构中记录了信号的布局,悬挂信号集和处理动作。如果信号是要被忽 略的,内核不做任何动作就返回。否则,将此信号加入悬挂信号集合中。(悬挂信号集合通常用位串表示,每位对应一个信号,内核无法记录同一信号的多个实 例)。
如果进程处于可中断的睡眠状态,并且该信号非阻塞,内核唤醒进 程。被唤醒进程一旦运行则在返回用户态前优先处理悬挂信号,当有悬挂信号并且非阻塞时,内核查看是否有处理句柄,如果没有注册句柄,则采取默认动作(通常 为终止进程)。如果有句柄,则将此信号加入阻塞信号屏蔽中。
最后内核安排进程返回到用户态并执行信号句柄,同时保证句柄执行完时,进程从被中断处代码执行。
由异步事件产生的信号可能在任一条指令后发生,当信号句柄完成时,进程从中断之处起执行。如果信号是在进程处于系统调用期间到达的,内核通常abort此系统调用并返回错误码EINTR。
进程可以有选择的阻塞信号交付,当一个被阻塞的信号生成时,如果进程指定的动作为默认或者捕获,则此信号一直悬挂于该进程直到对此信号的阻塞放开,或者信号动作改为忽略。 系统对阻塞信号的判定是在信号交付时而非生成时,这样可以允许进程在信号被交付前改变信号动作。
每个进程有一个阻塞信号屏蔽,它定义当前被阻塞交付的那些信号。可认为它是一个位串,每位对应一个信号。如果某信号对应的位被设置,则该信号当前阻塞,进程可调用
sigprocmask函数来检查或设置屏蔽。
程序错误类信号:默认动作使进程流产,产生core文件。
SIGABRT: 调用abort函数生成的信号。
SIGFPE: 浮点计算错误。
SIGILL: 非法指令错误。
SIGBUS/SIGSEGV:硬件错误-非法地址访问。
SIGEMT: 硬件错误
SIGSYS: 非法系统调用。
SIGTRAP: 硬件错误(通常为断点指令)。
程序终止类信号:默认动作使进程终止,我们通常要处理这类信号,做一些清理工作,句柄函数应在结束时为此信号指定默认动作,然后再次生成该信号,使得程序终止。
SIGHUP:终端断开连接时,生成此信号给控制进程。
SIGINT:Ctrl-C或Delete按下时,由终端驱动生成,并发送给前台进程组中的所有进程。
SIGKILL:使程序立即终止,不能被捕获或忽略,也不能被阻塞。
SIGQUIT:Ctrl-\,如SIGINT,并且产生core。
SIGTERM:该信号使程序终止,但是可以阻塞、捕获、忽略。
闹钟类信号:通知定时器到期,默认动作是终止程序,但通常会设置句柄。
SIGALRM:alarm/setitimer函数设置定时到期后,会产生此信号。
SIGPROF:
SIGVTALRM:
I/O类信号:通知进程在描述字上发生了感兴趣事件,支持信号驱动IO。
SIGIO:fd准备执行输入输出时发送此信号。
SIGPOLL:异步I/O信号。
SIGURG:网络收到带外数据时可选择生成此信号。
作业控制类信号:
SIGCHLD: 进程终止或停止时会向其父进程发送该信号,默认动作为忽略。
SIGCONT: 使停止的进程恢复运行。
SIGSTOP: 停止进程。
SIGTSTP/SIGTTIN/SIGTTOU:
操作错误类信号:默认动作终止程序。
SIGPIPE: 管道破裂。
SIGXCPU/SIGXFSZ:
signal函数:
void (* signal(int sig, void (*func)(int)))(int);
sig指明是哪一种信号。
func指明动作:SIG_DFL, SIG_IGN,或者信号句柄地址。
当信号发生时,如果func指向信号句柄,系统在将控制转往句柄前,先将该信号动作置为DFL,或者阻塞该信号直到句柄完成。
Signal函数返回值指向前一次有效动作指针:SIG_DFL,SIG_IGN,或信号地址,这提供了恢复信号动作的机制。 如果signal调用出错,返回SIG_ERR并设置errno。
进程初启时的信号动作:
fork:继承父进程的动作
exec:所有信号动作要么是忽略要么是默认。
不可靠信号:
早期版本Unix中使用signal,每当信号交付时,其动作总是由系统重置为默认动作,因此为了使信号句柄执行期间,仍能对同一信号后续做反应,需要再次调用signal。
Catch_Signal(){
// 如果第二次信号刚好在此时发生,将导致进程终止core掉。
signal(SIGQUIT,Catch_Signal);
}
Main(){
signal(SIGQUIT, Catch_Signal);
…
}
使用signal的另一个问题是,对于信号,进程要么忽略,要么捕获,无法在一段时间内阻塞信号(推迟信号的交付),为了克服signal兼容性问题,现代unix均实现了POSIX定义的sigaction函数,该函数采用一个sigaction结构,除定义信号交付时要采取的动作外,还包含其他一些动作控制信息。
sigaction还允许调用进程检测或指定与特定信号相关的动作。
int sigaction(int sig, const struct sigaction* act, struct sigaction* oact);
sig指定信号-除SIGKILL和SIGSTOP。
如果act为NULL,则不改变信号动作,只查询当前动作。
成功返回0,失败则不安装新信号动作,返回-1,设置errno。
struct sigaction{
void (*sa_handler)(int); // 同signal的第二参数func。
void(*sa_sigaction)(int, siginfo_t*, void*); // 仅当flags设置SA_SIGINFO起作用。
sigset_t sa_mask; // 指明信号执行期间要阻塞的一组信号,除此之外导致信号句柄执
行的信号也自动阻塞,除非指定了SA_NODEFER。信号句柄正常返回时,屏蔽恢复到原先状态。
int sa_flags; //
};
sa_flags是一个位串,可以通过或运算生成。可设置下列标志:
SA_NOCLDSTOP: 只对CHLD信号起作用,子进程暂停时不发信号给父进程。
SA_RESTART: 信号句柄返回时,自动恢复被该信号中断的系统调用。否则该系统调用将中断返回-1,并设置errno为EINTR。
SA_ONSTACK:
SA_RESETHAND:信号句柄入口,系统将重置信号动作为SIG_DFL.
SA_NODEFER:句柄执行期间,不自动阻塞该信号。
SA_NOCLDWAIT:只对CHLD起作用,调用进程的所有子进程在终止时不会成为Zombe。这种情况下,父进程无需要wait子进程,并且子进程终止也不向父进程发SIGCHLD信号。
如果父进程调用wait,将阻塞到所有子进程终止,并返回-1,errno设为ECHILD.
SA_SIGINFO:如果未设置此标志,则信号句柄原型为:
void func(int signo);
如果设置此标志,则句柄原型为:
void func(int signo, singinfo_t* info, void* context);
Info- 解释信号生成的原因。
Context-信号被交付时所中断进程的上下文。
一旦用sigaction为特定信号建立了动作,该动作就一直保持,直到另一次调用sigaction,或者调用exec,或者因设置了SA_RESETHAND导致系统自动改变动作为默认为止。
除了外部中断产生信号外,程序可以显式的调用raise函数给他自己发送信号,或调用kill向自己或其他进程发送信号。
阻塞信号意味着保持该信号并推迟它的交付,可以防止程序中的关键代码被信号中断。
信号集操作:
int sigemptyset(sigset_t* set); // 清空信号集
int sigfillset(sigset_t* set); // 包含所有信号集
sigaddset/sigdelset/sigismember;
sigprocmask用来检测或改变调用进程的信号屏蔽。
int sigprocmask(int how, const sigset_t* set, sigset_t* oset);
How: SIGBLOCK SIG_UNBLOCK SIG_SETMASK
如果调用sigprocmask放开某个信号而导致任何悬挂信号被解除阻塞,则函数返回前,这些信号中至少有一个被交付。
检查悬挂信号:int sigpending(sigset_t* set);
等待信号:int pause(void);
悬挂调用进程直到有一个信号到达。仅当句柄执行并返回时,pause函数才返回:此时返回-1,并设置errno为EINTR。所有其他情况下pause不返回。
如果多个相同信号在信号句柄运行前发给了进程,则句柄只被运行一次。换句话说,默认情况下unix信号是非排队的,只有当实现支持实时信号并且sa_flags设置SA_SIGINFO时,由sigqueue生成的后续信号才排队。
I/O执行期间,有可能到达信号,此时有两种情况:重新开始系统调用还是返回失败.
早期unix特征为,进程执行慢系统调用期间捕获信号时,该调用被中断并设置errno为EINTR。现代unix增加了sa_flags选项SA_RESTART可对单个信号要求自动恢复被中断的系统调用。
原则如下:如果进程阻塞于慢系统调用,并且进程捕获信号且该信号句柄返回,系统调用可能返回EINTR。 虽然有些unix能自动恢复系统调用,但是为了兼容性,我们必须准备慢系统调用返回EINTR,当检测到EINTR,要么重新开始系统调用,要么做其他处理。
Again:
if (n=read(fd,buff, BUFSIZE) < 0) {
if (errno ==EINTR)
goto Again;
else
…}