Comparison Sort:Quick Sort

本文深入讲解了快速排序算法的原理及其实现过程,基于分治思想,通过一趟排序将数据分割成独立的两部分,再递归进行排序,最终使整个数据变为有序序列。文章提供了详细的Java代码实现。

一、快速排序描述

快排基于分治思想,通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

二、Java代码实现:

package algorithmInit;
//快速排序
public class QuickSort {
	public static void main(String[] args) {
		//测试
		int[] a = {47, 32, 83, 94, 55, 16, 97, 18};
	    int start = 0;
	    int end = a.length - 1;
	    quickSort(a, start, end);
	    for (int anA : a) {
	       System.out.print(anA + " ");
	    }
	}
	public static void quickSort(int arr[], int low, int high) {
		int l = low;
	    int h = high;
	    int baseNum = arr[low];
	    while (l < h) {
	    	//从右向左查找小于指定基数的数,找到之后跳出循环执行下面if循环,交换数据
	        while (l < h && arr[h] >= baseNum) {
	            h--;
	        }
	        //交换数据
	        if (l < h) {
	        	int temp = arr[h];
	            arr[h] = arr[l];
	            arr[l] = temp;
	            l++;
	        }
	        //从左向右查找大于指定基数的数,找到后跳出循环执行下面if循环,交换数据
	        while (l < h && arr[l] <= baseNum) {
	        	l++;
	        }
	        //交换数据
	        if (l < h) {
	            int temp = arr[h];
	            arr[h] = arr[l];
	            arr[l] = temp;
	            h--;
	        }
	     }
	     if (l > low) {
	         quickSort(arr, low, l - 1);
	     }
	     if (h < high) {
	         quickSort(arr, l + 1, high);
	     }
	 }
}

 

### Cocktail Sort Algorithm Explanation and Implementation Cocktail Sort, also known as Bidirectional Bubble Sort, is a variation of the Bubble Sort algorithm. It works by repeatedly traversing the list in both directions—first from the beginning to the end, and then from the end to the beginning. This approach helps in reducing the number of passes required to sort the array compared to the standard Bubble Sort. The algorithm operates by comparing adjacent elements and swapping them if they are in the wrong order. During the forward pass, the largest unsorted element bubbles up to its correct position at the end of the list. In the backward pass, the smallest unsorted element moves to its correct position at the beginning of the list. This process continues until the entire list is sorted. One of the advantages of Cocktail Sort is that it can be more efficient than Bubble Sort in certain cases, particularly when small values are located near the end of the list (sometimes referred to as "turtles" in Bubble Sort terminology). By alternating the direction of traversal, these elements can be moved to their correct positions more quickly. #### Implementation in Python Here is a Python implementation of the Cocktail Sort algorithm: ```python def cocktail_sort(arr): n = len(arr) swapped = True start = 0 end = n - 1 while swapped: swapped = False # Forward pass for i in range(start, end): if arr[i] > arr[i + 1]: arr[i], arr[i + 1] = arr[i + 1], arr[i] swapped = True if not swapped: break swapped = False end -= 1 # Backward pass for i in range(end - 1, start - 1, -1): if arr[i] > arr[i + 1]: arr[i], arr[i + 1] = arr[i + 1], arr[i] swapped = True start += 1 return arr ``` In this implementation, two nested loops are used to traverse the array in both directions. The `start` and `end` variables keep track of the current range of the array that needs to be sorted. After each pass, the range is adjusted to exclude the already sorted elements at both ends. #### Time Complexity The time complexity of Cocktail Sort is **O(n²)** in the worst and average cases, similar to Bubble Sort. However, in the best case scenario (when the list is already sorted), the time complexity improves to **O(n)** due to the early exit condition when no swaps are made during a pass. Space complexity is **O(1)** because the algorithm sorts the array in place and only uses a constant amount of additional space. #### Use Cases Cocktail Sort is primarily used for educational purposes or in situations where simplicity is preferred over performance. It is not suitable for large datasets due to its quadratic time complexity. However, it can be useful for small arrays or nearly sorted data where the bidirectional approach can reduce the number of passes required. #### Comparison with Other Sorting Algorithms Compared to other sorting algorithms like Quick Sort or Merge Sort, Cocktail Sort is much slower and less efficient. However, it has the advantage of being simpler to understand and implement. It also has a smaller memory footprint compared to more complex algorithms[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值