监督机器学习与神经网络深入解析
1. 监督机器学习中的提升树算法
1.1 提升树的绘图实现
在监督机器学习中,有关于提升树的绘图函数 plot_boosting_trees 。以下是该函数的代码:
def plot_boosting_trees(data, steps=10, mcws=[30,20,20,10], gammas=
[100,200,300,500]):
# to reduce clutter uncomment one of following two lines
#mcws=[10]
#gammas=[200]
learners = [(mcw, gamma, Boosting_learner(data,
sp_DT_learner(min_child_weight=mcw, gamma=gamma)))
for gamma in gammas for mcw in mcws
]
plt.ion()
plt.xscale('linear') # change between log and linear scale
plt.xlabel("number of trees")
plt.ylabel("mean squared loss")
markers = (m+c for c in ['k','g','r','b','m','c','y'] for m in
['-','--','-.',':'])
for (mcw,gamma,learner) in
超级会员免费看
订阅专栏 解锁全文
9万+

被折叠的 条评论
为什么被折叠?



