POJ1947 Rebuilding Roads 树形DP

本文探讨了一种使用树形动态规划的方法来评估地震对农场道路网络潜在破坏的影响。具体而言,目标是最小化需要重建的道路数量,以便隔离包含特定数量谷仓的子区域。通过构建树状数据结构并应用DP算法,可以有效地解决这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.youkuaiyun.com/jiangjunshow

也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!

               

Description

The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree.

Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

Input

* Line 1: Two integers, N and P

* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads.

Output

A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated.

Sample Input

11 61 21 31 41 52 62 72 84 94 104 11

Sample Output

2

Hint

[A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.]
题意:给出n,p,一共有n个节点,要求最少减去最少的边是多少,剩下p个节点
思路:典型的树形DP,

dp[s][i]:记录s结点,要得到一棵j个节点的子树去掉的最少边数
 考虑其儿子k
 1)如果不去掉k子树,则
 dp[s][i] = min(dp[s][j]+dp[k][i-j])  0 <= j <= i

 2)如果去掉k子树,则
 dp[s][i] =  dp[s][i]+1
 总的为
 dp[s][i] = min (min(dp[s][j]+dp[k][i-j]) ,  dp[s][i]+1 )

 
#include <stdio.h>#include <string.h>#include <algorithm>using namespace std;int n,p,root;int dp[155][155];int father[155],son[155],brother[155];void dfs(int root){    int i,j,k,tem;    for(i = 0; i<=p; i++)        dp[root][i] = 10000000;    dp[root][1] = 0;    k = son[root];    while(k)    {        dfs(k);        for(i = p; i>=1; i--)        {            tem = dp[root][i]+1;            for(j = 1; j<i; j++)                tem = min(tem,dp[k][i-j]+dp[root][j]);            dp[root][i] = tem;        }        k = brother[k];    }}int solve(){    int ans,i;    dfs(root);    ans = dp[root][p];    for(i = 1; i<=n; i++)//除了根节点,其他节点要想成为独立的跟,必先与父节点断绝关系,所以要先加1        ans = min(ans,dp[i][p]+1);    return ans;}int main(){    int i,x,y;    while(~scanf("%d%d",&n,&p))    {        memset(father,0,sizeof(father));        memset(son,0,sizeof(son));        for(i = 1; i<n; i++)        {            scanf("%d%d",&x,&y);            father[y] = 1;//记录该点有父亲节点            brother[y] = son[x];//记录兄弟节点            son[x] = y;//记录子节点        }        for(i = 1; i<=n; i++)        {            if(!father[i])//找到根节点            {                root = i;                break;            }        }        printf("%d\n",solve());    }    return 0;}

           

给我老师的人工智能教程打call!http://blog.youkuaiyun.com/jiangjunshow
这里写图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值