LangChain in java

LangChain is primarily a Python and JavaScript/TypeScript project, but there are Java alternatives and integrations that allow similar capabilities.

If you're looking for LangChain-like functionality in Java, here’s a practical overview:


🔧 1. Use LangChain4j (LangChain for Java)

LangChain4j is the official LangChain-style library for Java, maintained by the LangChain ecosystem.

✨ Features:

  • Prompt templating

  • Memory

  • LLM integrations (OpenAI, Azure, Hugging Face, Ollama, etc.)

  • Tools and Chains

  • Retrieval Augmented Generation (RAG)


✅ Example (LangChain4j)

1. Add Maven Dependency

<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j</artifactId>
    <version>0.26.0</version>
</dependency>

Versions change frequently. Always check: Maven Central Repository Search


2. Basic Chat Example (OpenAI)

import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.SystemMessage;
import dev.langchain4j.service.UserMessage;
import dev.langchain4j.service.AiService;

public class LangChain4jExample {

    interface Assistant {
        @SystemMessage("You are a helpful assistant.")
        String chat(@UserMessage String message);
    }

    public static void main(String[] args) {
        var model = OpenAiChatModel.withApiKey("YOUR_OPENAI_API_KEY");

        Assistant assistant = AiService.create(Assistant.class, model);
        String response = assistant.chat("What is the capital of France?");
        System.out.println(response);
    }
}

3. File or Document Q&A (RAG)

You can load PDF/text/CSV files and use embeddings + vector stores (like FAISS, Chroma, or Redis) for semantic search.

LangChain4j supports:

  • Embedding models (OpenAI, HuggingFace)

  • Vector stores (in-memory, Redis, Qdrant)


🚀 Summary

FeatureSupport in Java
Prompt templating✅ LangChain4j
Chains and tools✅ LangChain4j
Memory support✅ LangChain4j
Vector store + RAG✅ LangChain4j
OpenAI/LLM support✅ LangChain4j
Ollama/Local model✅ via REST
### 集成LangChainJava项目的挑战 目前,LangChain主要支持Python环境下的开发和应用[^1]。由于LangChain库本身并非针对Java设计,在Java项目中直接集成LangChain并不常见也较为复杂。 然而,可以通过几种间接方式实现这一目标: #### 使用REST API接口 如果LangChain功能已经封装成了Web服务形式提供,则可以考虑通过HTTP请求的方式调用这些API来完成所需的任务。这通常涉及到创建一个基于Spring Boot或其他框架搭建的服务端程序作为中介层,该中间件负责接收来自Java客户端的应用逻辑指令并转发给实际运行于Python环境中的LangChain实例处理后再返回结果给前端展示或进一步加工利用。 ```java // Example of calling RESTful service from Java using HttpClient. import java.net.URI; import java.net.http.HttpClient; import java.net.http.HttpRequest; import java.net.http.HttpResponse; public class LangchainIntegrationExample { public static void main(String[] args) throws Exception { String url = "http://localhost:8000/langchain-endpoint"; HttpRequest request = HttpRequest.newBuilder() .uri(URI.create(url)) .GET() .build(); HttpResponse<String> response = HttpClient.newHttpClient().send(request, HttpResponse.BodyHandlers.ofString()); System.out.println(response.body()); } } ``` #### 调用外部脚本 另一种方法是在Java应用程序内部启动子进程执行预先编写好的Python脚本来操作LangChain模型和服务。这种方式虽然可行但可能带来额外的安全性和性能开销问题需要注意防范解决。 ```java // Running Python script as external process in Java application. ProcessBuilder pb = new ProcessBuilder("python3", "/path/to/your_script.py"); pb.redirectErrorStream(true); Process p = pb.start(); InputStream is = p.getInputStream(); BufferedReader br = new BufferedReader(new InputStreamReader(is)); String line; while ((line = br.readLine()) != null) { System.out.println(line); } br.close(); p.waitFor(); ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值