LangChain in java

LangChain is primarily a Python and JavaScript/TypeScript project, but there are Java alternatives and integrations that allow similar capabilities.

If you're looking for LangChain-like functionality in Java, here’s a practical overview:


🔧 1. Use LangChain4j (LangChain for Java)

LangChain4j is the official LangChain-style library for Java, maintained by the LangChain ecosystem.

✨ Features:

  • Prompt templating

  • Memory

  • LLM integrations (OpenAI, Azure, Hugging Face, Ollama, etc.)

  • Tools and Chains

  • Retrieval Augmented Generation (RAG)


✅ Example (LangChain4j)

1. Add Maven Dependency

<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j</artifactId>
    <version>0.26.0</version>
</dependency>

Versions change frequently. Always check: Maven Central Repository Search


2. Basic Chat Example (OpenAI)

import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.SystemMessage;
import dev.langchain4j.service.UserMessage;
import dev.langchain4j.service.AiService;

public class LangChain4jExample {

    interface Assistant {
        @SystemMessage("You are a helpful assistant.")
        String chat(@UserMessage String message);
    }

    public static void main(String[] args) {
        var model = OpenAiChatModel.withApiKey("YOUR_OPENAI_API_KEY");

        Assistant assistant = AiService.create(Assistant.class, model);
        String response = assistant.chat("What is the capital of France?");
        System.out.println(response);
    }
}

3. File or Document Q&A (RAG)

You can load PDF/text/CSV files and use embeddings + vector stores (like FAISS, Chroma, or Redis) for semantic search.

LangChain4j supports:

  • Embedding models (OpenAI, HuggingFace)

  • Vector stores (in-memory, Redis, Qdrant)


🚀 Summary

FeatureSupport in Java
Prompt templating✅ LangChain4j
Chains and tools✅ LangChain4j
Memory support✅ LangChain4j
Vector store + RAG✅ LangChain4j
OpenAI/LLM support✅ LangChain4j
Ollama/Local model✅ via REST
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值