| Status | In/Out | TIME Limit | MEMORY Limit | Submit Times | Solved Users | JUDGE TYPE |
|---|---|---|---|---|---|---|
| stdin/stdout | 10s | 8192K | 1970 | 401 | Standard |
Unfortunately, they realize that it might be impossible to divide the marbles in this way (even if the total value of all marbles is even). For example, if there are one marble of value 1, one of value 3 and two of value 4, then they cannot be split into sets of equal value. So, they ask you to write a program that checks whether there is a fair partition of the marbles.
Input
Each line in the input describes one collection of marbles to be divided. The lines consist of six non-negative integers n1, n2, ..., n6, where ni is the number of marbles of value i. So, the example from above would be described by the input-line ``1 0 1 2 0 0''. The maximum total number of marbles will be 20000.
The last line of the input file will be ``0 0 0 0 0 0''; do not process this line.
Output
For each colletcion, output ``Collection #k:'', where k is the number of the test case, and then either ``Can be divided.'' or ``Can't be divided.''.
Output a blank line after each test case.
Sample Input
1 0 1 2 0 0 1 0 0 0 1 1 0 0 0 0 0 0
Sample Output
Collection #1: Can't be divided. Collection #2: Can be divided.
#include <stdio.h>
#include <string.h>
int a[7],sum,b[100],n;
bool dp[60001];
int main()
{
int i, j, k, t = 1, x;
while (scanf ("%d%d%d%d%d%d", &a[1], &a[2], &a[3], &a[4], &a[5], &a[6]) != EOF)
{
if (a[1]+a[2]+a[3]+a[4]+a[5]+a[6]==0) break;
printf("Collection #%d:/n", t++);
sum=0;
n=0;
for (i=1;i<=6;i++)
{
sum+=a[i]*i;
k=0;
b[n++]=k*i;
k++;
x=0;
while (x+k<a[i])
{
b[n++]=k*i;
x+=k;
k=k*2;
}
if (a[i]>x) b[n++]=(a[i]-x)*i;
}
if (sum%2)
{
printf ("Can't be divided./n/n");
continue;
}
memset(dp,false,sizeof(dp));
dp[0]=true;
for (i=0;i<n;i++)
for (j=sum/2;j>=b[i];j--)
if (dp[j-b[i]]) dp[j]=true;
if(dp[sum/2]) printf ("Can be divided./n/n");
else printf ("Can't be divided./n/n");
}
return 0;
}
本文介绍了一种算法解决方案,用于解决两个玩家如何公平地分配一组具有不同价值的大理石的问题。该算法通过动态规划实现,确保了计算效率,并正确判断是否可以实现公平分配。
1049





