DMA简介

本文详细介绍了直接内存访问(DMA)技术,解释了DMA如何允许硬件子系统独立于CPU进行内存读写操作,从而显著减少CPU开销。文章还探讨了DMA在现代计算机系统中的应用,包括在磁盘驱动控制器、图形卡、网络卡和声卡中的使用,并讨论了DMA在实现高性能嵌入式系统中的重要性。

Direct memory access

Direct memory access (DMA) is a feature of modern computers that allows certain hardware subsystems within the computer to access system memory for reading and/or writing independently of the central processing unit. Many hardware systems use DMA including disk drive controllers, graphics cards, network cards, and sound cards. Computers that have DMA channels can transfer data to and from devices with much less CPU overhead than computers without a DMA channel.

Without DMA, using programmed input/output (PIO) mode, the CPU typically has to be occupied for the entire time it's performing a transfer. With DMA, the CPU would initiate the transfer, do other operations while the transfer is in progress, and receive an interrupt from the DMA controller once the operation has been done. This is especially useful in real-time computing applications where not stalling behind concurrent operations is critical.

Principle

DMA is an essential feature of all modern computers, as it allows devices to transfer data without subjecting the CPU to a heavy overhead. Otherwise, the CPU would have to copy each piece of data from the source to the destination. This is typically slower than copying normal blocks of memory since access to I/O devices over a peripheral bus is generally slower than normal system RAM. During this time the CPU would be unavailable for any other tasks involving CPU bus access, although it could continue doing any work which did not require bus access.

A DMA transfer essentially copies a block of memory from one device to another. While the CPU initiates the transfer, it does not execute it. For so-called "third party" DMA, as is normally used with the ISA bus, the transfer is performed by a DMA controller which is typically part of the motherboard chipset. More advanced bus designs such as PCI typically use bus mastering DMA, where the device takes control of the bus and performs the transfer itself.

A typical usage of DMA is copying a block of memory from system RAM to or from a buffer on the device. Such an operation does not stall the processor, which as a result can be scheduled to perform other tasks. DMA transfers are essential to high performance embedded systems. It is also essential in providing so-called zero-copy implementations of peripheral device drivers as well as functionalities such as network packet routing, audio playback and streaming video.

Cache coherency problem

DMA can lead to cache coherency problems. Imagine a CPU equipped with a cache and an external memory, which can be accessed directly by devices using DMA. When the CPU accesses location X in the memory, the current value will be stored in the cache. Subsequent operations on X will update its cached copy. If the cache is not flushed to the memory before the next time a device tries to access X, the device will receive a stale value of X.


Similarly, if the cached copy of X is not invalidated when a device writes a new value to the memory, then the CPU will operate on a stale value of X.

Image:cache_incoherence_write.jpg

DMA engines

In addition to hardware interaction, DMA can also be used to offload expensive memory operations, such as large copies or scatter-gather operations, from the CPU to a dedicated DMA engine. While normal memory copies are typically too small to be worthwhile to offload on today's desktop computers, they are frequently offloaded on embedded devices due to more limited resources.[1]

Newer Intel Xeon processors also include a DMA engine technology called I/OAT, meant to improve network performance on high-throughput network interfaces, in particular gigabit Ethernet and faster.[2] However, various benchmarks with this approach by Intel's Linux kernel developer Andrew Grover indicate no more than 10% improvement in CPU utilization with receiving workloads, and no improvement when transmitting data.[3]

Reconfigurable DMA circuits, for instance, based on GAG Generic Address Generators, provide the enabling technology of Auto-sequencing memory, programmable by Flowware to generate the data streams for running system architectures based on the Anti machine paradigm, which could be called a DMA engine.

Examples

ISA

For example, a PC's ISA DMA controller has 16 DMA channels of which 7 are available for use by the PC's CPU. Each DMA channel has associated with it a 16-bit address register and a 16-bit count register. To initiate a data transfer the device driver sets up the DMA channel's address and count registers together with the direction of the data transfer, read or write. It then instructs the DMA hardware to begin the transfer. When the transfer is complete, the device interrupts the CPU.

"Scatter-gather" DMA allows the transfer of data to and from multiple memory areas in a single DMA transaction. It is equivalent to the chaining together of multiple simple DMA requests. Again, the motivation is to off-load multiple input/output interrupt and data copy tasks from the CPU.

DRQ stands for DMA request; DACK for DMA acknowledge. These symbols are generally seen on hardware schematics of computer systems with DMA functionality. They represent electronic signaling lines between the CPU and DMA controller.

 
采用PyQt5框架与Python编程语言构建图书信息管理平台 本项目基于Python编程环境,结合PyQt5图形界面开发库,设计实现了一套完整的图书信息管理解决方案。该系统主要面向图书馆、书店等机构的日常运营需求,通过模块化设计实现了图书信息的标准化管理流程。 系统架构采用典型的三层设计模式,包含数据存储层、业务逻辑层和用户界面层。数据持久化方案支持SQLite轻量级数据库与MySQL企业级数据库的双重配置选项,通过统一的数据库操作接口实现数据存取隔离。在数据建模方面,设计了包含图书基本信息、读者档案、借阅记录等核心数据实体,各实体间通过主外键约束建立关联关系。 核心功能模块包含六大子系统: 1. 图书编目管理:支持国际标准书号、中国图书馆分类法等专业元数据的规范化著录,提供批量导入与单条录入两种数据采集方式 2. 库存动态监控:实时追踪在架数量、借出状态、预约队列等流通指标,设置库存预警阈值自动提醒补货 3. 读者服务管理:建立完整的读者信用评价体系,记录借阅历史与违规行为,实施差异化借阅权限管理 4. 流通业务处理:涵盖借书登记、归还处理、续借申请、逾期计算等标准业务流程,支持射频识别技术设备集成 5. 统计报表生成:按日/月/年周期自动生成流通统计、热门图书排行、读者活跃度等多维度分析图表 6. 系统维护配置:提供用户权限分级管理、数据备份恢复、操作日志审计等管理功能 在技术实现层面,界面设计遵循Material Design设计规范,采用QSS样式表实现视觉定制化。通过信号槽机制实现前后端数据双向绑定,运用多线程处理技术保障界面响应流畅度。数据验证机制包含前端格式校验与后端业务规则双重保障,关键操作均设有二次确认流程。 该系统适用于中小型图书管理场景,通过可扩展的插件架构支持功能模块的灵活组合。开发过程中特别注重代码的可维护性,采用面向对象编程范式实现高内聚低耦合的组件设计,为后续功能迭代奠定技术基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值