第P10周:Pytorch实现车牌识别
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
在之前的案例中,我们多是使用datasets.ImageFolder函数直接导入已经分类好的数据集形成Dataset,然后使用DataLoader加载Dataset,但是如果对无法分类的数据集,我们如何导入,并进行识别呢?
本周我将自定义一个MyDataset加载车牌数据集并完成车牌识别
🍺 基础要求:
- 学习并理解本文
🍺 拔高要求:
- 对单张车牌进行识别
🏡我的环境:
- 语言环境:Python3.8
- 编译器:Jupyter Lab
- 深度学习环境:
- torch==2.2.2
- torchvision==0.17.2
前期准备
- 如果设备上支持GPU就使用GPU,否则使用CPU
- Mac上的GPU使用mps
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.models as models
import torch.nn.functional as F
import torch.nn as nn
import torch,torchvision
import os,PIL,pathlib,warnings
warnings.filterwarnings("ignore") #忽略警告信息
# this ensures that the current MacOS version is at least 12.3+
print(torch.backends.mps.is_available())
# this ensures that the current current PyTorch installation was built with MPS activated.
print(torch.backends.mps.is_built())
# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
device # # 使用的是GPU
True
True
device(type='mps')
一、导入数据
1.1. 获取类别名
import os,PIL,random,pathlib
data_dir = './data/p10/015_licence_plate/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[-1].split("_")[1].split(".")[0] for path in data_paths]
classeNames[:3]
['沪G1CE81', '云G86LR6', '鄂U71R9F']
data_paths = list(data_dir.glob('*'))
data_paths_str = [str(path) for path in data_paths]
data_paths_str[:3]
['data/p10/015_licence_plate/000008250_沪G1CE81.jpg',
'data/p10/015_licence_plate/000015082_云G86LR6.jpg',
'data/p10/015_licence_plate/000004721_鄂U71R9F.jpg']
1.2. 数据可视化
import os,PIL,random,pathlib
import matplotlib.pyplot as plt
plt.figure(figsize=(14,5))
plt.suptitle("数据示例",fontsize=15)
for i in range(18):
plt.subplot(3,6,i+1)
# 显示图片
images = plt.imread(data_paths_str[i])
plt.imshow(images)
plt.show()
1.3. 标签数字化
import numpy as np
char_enum = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽",