CS 162 HW 5: Map ReduceR

Java Python CS 162 HW 5

HW 5: Map Reduce

MapReduce is a programming model for scalable and highly parallelized data processing. It abstracts away the complexities of developing a fault tolerant distributed system by exposing a simple API where the user specifies two functions:

map: produces a set of key/value pairs from the input data

reduce: combines values corresponding to the same key

With these functions, tasks can be automatically parallelized and executed on a cluster. This paradigm is particularly powerful since it allows programmers with little background in distributed systems to write parallelizable code for a wide variety of real world tasks.

In this assignment, which is loosely based on a lab from MIT, you will be implementing your own fault tolerant MapReduce system in C. Specifically, you will be implementing a coordinator process that distributes tasks to worker processes that carry out the actual computation. You will also handle worker failure by implementing task redistribution. The system design you will be building is similar to that outlined in the MapReduce paper.

NOTE

In this assignment, we use the term “coordinator” rather than “master”.

NOTE

The purpose of this assignment is to teach you about distributed algorithms, so we will not be too strict on memory management (i.e. we will not test that you free all of the data you allocate). Of course, poor memory management that causes segmentation faults or other major issues will cause you to fail tests, but do not spend a lot of time worrying about memory leaks that do not impact the functionality of your code.

Components

This assignment is split up into three parts with distinct deadlines to help you space out the workload. Deadlines can be found CS 162 HW 5: Map ReduceR on Ed.

RPC lab

To help you get a basic idea of how the coordinator will communicate with workers, we have put together a lab that walks you through how rpcgen works. rpcgen is a protocol compiler that helps with writing Remote Procedure Call (RPC) applications in C. This lab is worth 5% of your grade on the entire assignment. The code you write for the lab will be in a separate directory (lab-rpc) from the rest of the HW Map Reduce code (hw-map-reduce). To trigger the autograder for the lab portion, you must push the code in the lab-rpc directory. There are no extensions for the lab portion of this assignment. However, you are free to use as many slip days as you’d like.

Checkpoint

You will be expected to complete the first part of the assignment (up to and including the Tasks section) by an earlier deadline. This checkpoint is worth 5% of your grade on the entire assignment. Note that for the checkpoint, you have to manually trigger the autograder build. If you miss the checkpoint, you may get up to a 95% on the assignment if you pass all the tests by the final deadline, assuming that you have completed the lab in time. If you additionally do not turn in the lab in time, you may get up to a 90% on the assignment. There are no extensions for the checkpoint portion of this assignment. However, you are free to use as many slip days as you’d like.

Final

The final component consists of the rest of the tasks (through Fault tolerance).

Getting started

To get started, log in to your development environment and get the starter code.

cd ~/code/personal

git pull staff main

cd hw-map-reduce

If you made changes to your repo on a different (virtual) machine, make sure to run git pull personal main as well         

内容概要:本文围绕SecureCRT自动化脚本开发在毕业设计中的应用,系统介绍了如何利用SecureCRT的脚本功能(支持Python、VBScript等)提升计算机、网络工程等相关专业毕业设计的效率与质量。文章从关键概念入手,阐明了SecureCRT脚本的核心对象(如crt、Screen、Session)及其在解决多设备调试、重复操作、跨场景验证等毕业设计常见痛点中的价值。通过三个典型应用场景——网络设备配置一致性验证、嵌入式系统稳定性测试、云平台CLI兼容性测试,展示了脚本的实际赋能效果,并以Python实现的交换机端口安全配置验证脚本为例,深入解析了会话管理、屏幕同步、输出解析、异常处理和结果导出等关键技术细节。最后展望了低代码化、AI辅助调试和云边协同等未来发展趋势。; 适合人群:计算机、网络工程、物联网、云计算等相关专业,具备一定编程基础(尤其是Python)的本科或研究生毕业生,以及需要进行设备自动化操作的科研人员; 使用场景及目标:①实现批量网络设备配置的自动验证与报告生成;②长时间自动化采集嵌入式系统串口数据;③批量执行云平台CLI命令并分析兼容性差异;目标是提升毕业设计的操作效率、增强实验可复现性与数据严谨性; 阅读建议:建议读者结合自身毕业设计课题,参考文中代码案例进行本地实践,重点关注异常处理机制与正则表达式的适配,并注意敏感信息(如密码)的加密管理,同时可探索将脚本与外部工具(如Excel、数据库)集成以增强结果分析能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值