题意:给出n(1<=n<=300000),m(1<=m<=50000),u(1<=u<=10^9),接下来输入数组a(n个数),m次操作,每次操作输入L,R,v,p,计算出[L,R]区间内小于V的数的个数k,把A[p]修改为u*k/(R-L+1)。最后输出m次操作后的数组.
思路:lrj训练指南的一种叫分块查找的数据结构,把每个块分成大概O(sqrt(n))个元素,编码简单又快
#include<cstdio>
#include<cstring>
#include<algorithm>
const int maxn = 3 * 1e5 + 10;
const int sz = 4096;
using namespace std;
int A[maxn], block[maxn / sz + 1][sz];
int n, m, u;
void init() {
int b = 0, j = 0;
for(int i = 0; i < n; i++) {
scanf("%d", &A[i]);
block[b][j] = A[i];
if(++j == sz) { b++; j = 0; }
}
for(int i = 0; i < b; i++) sort(block[i], block[i] + sz);
if(j) sort(block[b], block[b] + j);
}
///区间[l, r]严格小于v的个数k
int query(int l, int r, int v) {
int lb = l / sz, rb = r / sz;
int k = 0;
if(lb == rb) {
for(int i = l; i <= r; i++)
if(A[i] < v) k++;
} else {
for(int i = l; i < (lb + 1) * sz; i++) if(A[i] < v) k++; ///第一块
for(int i = rb * sz; i <= r; i++) if(A[i] < v) k++; ///最后一块
for(int b = lb + 1; b < rb; b++) { ///中间的完整块
k += lower_bound(block[b], block[b] + sz, v) - block[b];
}
}
return k;
}
///把A[p]的位置改为x
void update(int p, int x) {
if(A[p] == x) return ;
int old = A[p], pos = 0, *B = &block[p / sz][0];
A[p] = x;
while(B[pos] < old) pos++; B[pos] = x;
if(x > old) {
while(pos < sz - 1 && B[pos] > B[pos + 1]) {
swap(B[pos], B[pos + 1]); pos++;
}
} else {
while(pos && B[pos] < B[pos - 1]) {
swap(B[pos], B[pos - 1]); pos--;
}
}
}
int main() {
while(scanf("%d %d %d", &n, &m, &u) != EOF) {
init();
while(m--) {
int L, R, v, p, k;
scanf("%d %d %d %d", &L, &R, &v, &p);
k = query(L - 1, R - 1, v);
update(p - 1, (long long)u * k / (R - L + 1));
}
for(int i = 0; i < n; i++)
printf("%d\n", A[i]);
}
return 0;
}