题意:给n个点初始位置和初始速度, 问哪时候最远的两个点距离最小。
思路:对于任意时刻i j两点距离的平方为一个关于时间t 的二次方程, di^2 = ai * t^2 + bi * t + ci的形式,对于任意时刻任意两点距离最大值其实就是,F(t) = max { sqrt(di^2) } ,画在坐标系中可以看出这总是一个下凸的图形,这样利用三分就可快速求解
#include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long ll;
const int maxn = 5 * 1e4 + 10;
const double INF = 1e18;
const double eps = 1e-10;
using namespace std;
ll a[maxn], b[maxn], c[maxn];
ll x[maxn], y[maxn];
ll vx[maxn], vy[maxn];
int T, n, kase = 1, num;
double f(ll a, ll b, ll c, double t) { return t * t * a + t * b + c; }
double F(double t) {
double ans = - INF;
for(int i = 0; i < num; i++) {
ans = max(ans, f(a[i], b[i], c[i], t));
}
return ans;
}
int main() {
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
num = 0;
for(int i = 0; i < n; i++) {
scanf("%lld %lld", &x[i], &y[i]);
scanf("%lld %lld", &vx[i], &vy[i]);
}
for(int i = 0; i < n; i++) {
for(int j = i + 1; j < n; j++) {
ll dvx = vx[j] - vx[i];
ll dvy = vy[j] - vy[i];
ll dx = x[j] - x[i];
ll dy = y[j] - y[i];
a[num] = dvx * dvx + dvy * dvy;
b[num] = 2 * (dvx * dx + dvy * dy);
c[num] = dx * dx + dy * dy;
num++;
}
}
double L = 0, R = 1e9;
while(R - L > eps) {
double t1 = L + (R - L) / 3;
double t2 = R - (R - L) / 3;
if(F(t1) < F(t2)) R = t2;
else L = t1;
}
double ans = sqrt(F(R));
printf("Case #%d: %.2f %.2f\n", kase++, R, ans);
}
return 0;
}