题意:给一个数组,然后m个查询,查询[L, R]中,f = a[L] % a[L + 1] ..... % a[R],f的值
思路:因为a % b = a,当a < b时,所以只需使用线段树维护区间最小值,然后跳过被模数大于要模的数的区间
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<string>
#include<stack>
#include<vector>
#include<queue>
#include<set>
#include<algorithm>
#include<iostream>
typedef long long ll;
const int maxn = 1e6 + 10;
const double eps = 1e-7;
const ll INF = 1e18;
using namespace std;
int tree[4 * maxn], a[maxn];
int ql, qr, ind;
int T, m, q, n;
int ans;
void update(int node, int l, int r) {
if(l == r) { tree[node] = m; return ; }
int mid = (l + r) >> 1;
if(ind <= mid) update(node * 2, l, mid);
else update(node * 2 + 1, mid + 1, r);
tree[node] = min(tree[node * 2], tree[node * 2 + 1]);
}
void query(int node, int l, int r) {
if(ql > qr) return ;
if(tree[node] > ans) return ;
if(l == r) { ans %= tree[node]; return ; }
int mid = (l + r) >> 1;
if(ql <= mid) query(node * 2, l, mid);
if(qr > mid) query(node * 2 + 1, mid + 1, r);
}
int main()
{
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
for(ind = 1; ind <= n; ind++) {
scanf("%d", &m);
update(1, 1, n);
a[ind] = m;
}
scanf("%d", &q);
while(q--) {
scanf("%d %d", &ql, &qr);
ans = a[ql++];
query(1, 1, n);
printf("%d\n", ans);
}
}
return 0;
}