微软2014年4月 实习生招聘机试题 2.K-th string

本文探讨了在特定数量的0和1排列中找到第K个字符串的方法,并提供了实现细节和示例输入输出。

   《2.K-th string》

Time Limit: 10000ms
Case Time Limit: 1000ms
Memory Limit: 256MB

 

Description

Consider a string set that each of them consists of {0, 1} only. All strings in the set have the same number of 0s and 1s. Write a program to find and output the K-th string according to the dictionary order. If s​uch a string doesn’t exist, or the input is not valid, please output “Impossible”. For example, if we have two ‘0’s and two ‘1’s, we will have a set with 6 different strings, {0011, 0101, 0110, 1001, 1010, 1100}, and the 4th string is 1001.


Input

The first line of the input file contains a single integer t (1 ≤ t ≤ 10000), the number of test cases, followed by the input data for each test case.
Each test case is 3 integers separated by blank space: N, M(2 <= N + M <= 33 and N , M >= 0), K(1 <= K <= 1000000000). N stands for the number of ‘0’s, M stands for the number of ‘1’s, and K stands for the K-th of string in the set that needs to be printed as output.


Output

For each case, print exactly one line. If the string exists, please print it, otherwise print “Impossible”.


Sample In

3
2 2 2
2 2 7
4 7 47

Sample Out

0101
Impossible
01010111011

 

本来想用组合法求解,但可分析出对 n+m<=33且 m、n值不确定的情况下即使用long类型涉及到求组合数也会溢出,无论是用 C(m,n)=A(m,n) / n! ,还是用公式C(m,n)=m!/((m-n)! * n!),事实上第二个公式更容易溢出,一般求较小数的组合时我们均会采用第一个公式来编写程序;

个人给出的一个解如下:

#include <iostream>
#include <fstream>
using namespace std;

int main(){
	long tmp=0;
	//tmp = combination(5,2);
	//printf("%ld",tmp);
	int testCaseCnt=0;
	int m,n,k;
	int mm,nn,kk;
	int index=0;
	int sumCase=0;
	char charArea[34];
	long recComb;//record combination 记录上次组合数
	fstream fstr("testCase.txt");
	fstr>>testCaseCnt;

	while(testCaseCnt--){
		memset(charArea,0,sizeof(charArea));
		fstr>>n>>m>>k;


		if(k==1){
			while(n--)
				cout<<'0';
			while(m--)
				cout<<'1';
			cout<<endl;
			continue;
		}
		index = 0;
		sumCase = 0;//
		mm=m;
		//nn=n;
		//kk=k;
		//设index =k时,组合数为 com,推到得 index =K+1时,对应组合数为com * (mm+k)/(k+1),mm为当前剩余'1'个数
		recComb = 1; 
		while(mm){
			if(index == 0)
				recComb = 1;
			else 
				//recComb *=((mm+index-1)/(index));
				recComb = (recComb*(mm+index-1))/index;
			sumCase += recComb;
			if(k > sumCase){
				index++;
				if(index >n)
					break;
			}
			else if(k==sumCase){
				while(mm){
					charArea[index+mm-1]='1';
					mm--;
				}
				break;
			}
			else if(k < sumCase){
				charArea[index+mm-1]='1';
				sumCase -= recComb;
				recComb = 0;
				mm--;
				index = 0;
			}
		}
		if(sumCase < k){
			cout<<"Impossible"<<endl;
			continue;
		}
		for(int i=0;i<m+n;i++){
			if(charArea[i]!='1')
				charArea[i] = '0';
		}
		for(int i =0;i<(m+n)/2;i++){
			char tmp=charArea[i];
			charArea[i]=charArea[(m+n-1)-i];
			charArea[(m+n-1)-i]=tmp;

		}
		charArea[m+n]=0; //
		//charArea[m+n]=0;
		cout<<charArea<<endl;
	}
	fstr.close();
	
}


 

内容概要:本文介绍了一个基于MATLAB实现的无人三维路径规划项目,采用蚁群算法(ACO)与多层感知(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值