poj 1681 Painter's Problem(高斯消元法)

探讨了在一个n*n的方格中,通过改变特定格子及其相邻格子的颜色来将所有白色格子变为黄色所需的最少操作次数。采用高斯消元法解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and he wants to paint all the bricks yellow. But there is something wrong with Bob's brush. Once he uses this brush to paint brick (i, j), the bricks at (i, j), (i-1, j), (i+1, j), (i, j-1) and (i, j+1) all change their color. Your task is to find the minimum number of bricks Bob should paint in order to make all the bricks yellow. 

Input

The first line contains a single integer t (1 <= t <= 20) that indicates the number of test cases. Then follow the t cases. Each test case begins with a line contains an integer n (1 <= n <= 15), representing the size of wall. The next n lines represent the original wall. Each line contains n characters. The j-th character of the i-th line figures out the color of brick at position (i, j). We use a 'w' to express a white brick while a 'y' to express a yellow brick.

Output

For each case, output a line contains the minimum number of bricks Bob should paint. If Bob can't paint all the bricks yellow, print 'inf'.

Sample Input

2
3
yyy
yyy
yyy
5
wwwww
wwwww
wwwww
wwwww
wwwww

Sample Output

0
15

Source

POJ Monthly--2004.06.27 张嘉龄


题意:

一个n*n 的木板 ,每个格子 都 可以 染成 白色和黄色,( 一旦我们对也个格子染色 ,他的上下左右 都将改变颜色);

给定一个初始状态 , 求将 所有的 格子 染成黄色 最少需要染几次?  若 不能 染成 输出 inf。

 

思路:高斯消元法,可以参照poj1222,只是要判断是否无解;


代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=15;
char map[N][N];
int a[N*N][N*N+N];
int x[N*N];
void init(int n)
{
    memset(a,0,sizeof(a));
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        {
            int t=i*n+j;
            a[t][t]=1;
            if(i>0) a[(i-1)*n+j][t]=1;
            if(i<n-1) a[(i+1)*n+j][t]=1;
            if(j>0) a[i*n+j-1][t]=1;
            if(j<n-1) a[i*n+j+1][t]=1;
        }
}
int Gauss(int n)
{
    int col=0;
    int k;
    for(k=0;k<n,col<n;k++,col++)
    {
        int max_r=k;
        for(int i=k+1;i<n;i++)
            if(abs(a[max_r][col])<abs(a[i][col]))
                 max_r=i;
        if(max_r!=k)
            for(int i=col;i<=n;i++)
                swap(a[max_r][i],a[k][i]);
        if(a[k][col]==0)
        {
            k--;continue;
        }
        for(int i=k+1;i<n;i++)
        {
            if(a[i][col])
                for(int j=col;j<=n;j++)
                    a[i][j]^=a[k][j];
        }
    }
    for(int i=k;i<n;i++)
        if(a[i][n]!=0) return -1;
    for(int i=n-1;i>=0;i--)
    {
        x[i]=a[i][n];
        for(int j=i+1;j<=n;j++)
            x[i]^=(x[j]&&a[i][j]);
    }
    return 0;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        scanf("%d",&n);
        for(int i=0;i<n;i++)
            scanf("%s",map[i]);
        init(n);
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                if(map[i][j]=='y')
                    a[i*n+j][n*n]=0;
                else
                    a[i*n+j][n*n]=1;
        memset(x,0,sizeof(x));
        int ans=Gauss(n*n);
        if(ans==-1)
            printf("inf\n");
        else
        {
            for(int i=0;i<n*n;i++)
                if(x[i]==1) ans++;
            printf("%d\n",ans);
        }
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值