最长公共上升子序列 LCIS

本文介绍了一种求解最长公共上升子序列问题的O(nm)算法。通过枚举和动态规划的方法,在两个给定序列中寻找最长的共同上升子序列,并详细展示了算法的具体实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里总结一个O(nm)的算法。

  设题目给出a[],b[]两个序列。f[j]表示b序列到j的时候,与a[??]序列构成最长公共上升子序列的最优解。其中a[??]序列,从1到n枚举过来。

  如果某一个时刻a[i]==b[j],那么显然,我们就应该在0到j-1中,找一个f值最大的来更新最优解。这和求上升子序列是思想是一样的。另外,在枚举b[j]的时候,我们顺便保存一下小于a[i]的f值最大的b[j],这样在更新的时候,我们就可以做到O(1)的复杂度,从而将整个算法的复杂度保证在O(nm)


#include<iostream>
#include<string>
using namespace std;

int max(int a,int b)
{
    return a>b?a:b;
}

int a[1010],b[1010];
int f[1010],n,m;

int LCIS()
{
    int i,j,k;
    memset(f,0,sizeof(f));
    for(i=0;i<n;i++)
    {
        k=0;
        for(j=0;j<m;j++)
        {
            if(a[i]==b[j]) //如果a[i]==b[j]
            {
                if(f[j]<f[k]+1) //就在0到j-1之间,找一个b[k]小于a[i]的f[k]值最大的解
                    f[j]=f[k]+1;
            }
            if(a[i]>b[j]) //0到j-1中,对于小于a[i]的,保存f值的最优解
            {
                if(f[k]<f[j])
                    k=j;
            }
        }
    }
    int ans=0;
    for(i=0;i<m;i++)
        ans=max(ans,f[i]);
    return ans;
}

int main()
{
    int t,i,j;
    freopen("D:\\in.txt","r",stdin);
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
        scanf("%d",&m);
        for(j=0;j<m;j++)
        {
            scanf("%d",&b[j]);
        }
        printf("%d\n",LCIS());
        if(t)
            printf("\n");
    }
    return 0;
}


### 最长公共上升子序列 (LCIS) 的动态规划解法 #### 定义与背景 最长公共上升子序列(Longest Common Increasing Subsequence, LCIS)是指给定两个序列 $X$ 和 $Y$,找到一个既是最长的又是严格递增的子序列,这个子序列同时属于 $X$ 和 $Y$。这个问题可以被看作是 **最长公共子序列** (LCS)和 **最长上升子序列** (LIS)问题的一个组合。 对于两个输入序列 $X = \{x_1, x_2, ..., x_m\}$ 和 $Y = \{y_1, y_2, ..., y_n\}$,目标是找出它们之间的 LCIS[^4]。 --- #### 动态规划的状态定义 设 $dp[i][j]$ 表示以 $X_i$ 结尾并与 $Y_j$ 对应的最长公共上升子序列的长度,则状态转移方程如下: $$ dp[i][j] = \begin{cases} 0 & 如果 i=0 或 j=0 \\ max(dp[k][l]) + 1 & 如果 X[i]=Y[j], 并且 k<i,l<j,X[k]<X[i]\\ dp[i][j-1] & 否则 \end{cases} $$ 其中,如果当前字符相等 ($X[i]==Y[j]$),我们需要进一步检查之前所有的可能匹配位置 $(k,l)$ 来确保它是递增的,并更新最大值。 --- #### 时间复杂度分析 上述方法的时间复杂度较高,因为每次都需要遍历之前的元素来验证是否构成递增关系。因此总时间复杂度为 $O(mn^2)$ 或更高取决于具体实现方式。为了优化此过程,可以通过记录前驱索引来减少重复计算,从而降低到更优的时间复杂度如 $O(nm)$。 以下是基于 Python 的一种高效实现版本: ```python def lcis(X, Y): m, n = len(X), len(Y) # 初始化 DP 数组以及用于追踪路径的 prev 数组 dp = [[0]*(n+1) for _ in range(m+1)] prev = [[None]*(n+1) for _ in range(m+1)] max_len = 0 pos = -1 for i in range(1,m+1): for j in range(1,n+1): if X[i-1] == Y[j-1]: temp_max = 0 for p in range(j): if Y[p-1] < Y[j-1] and dp[i-1][p] > temp_max: temp_max = dp[i-1][p] dp[i][j] = temp_max + 1 if dp[i][j] > max_len: max_len = dp[i][j] pos = j else: dp[i][j] = dp[i][j-1] result = [] while pos is not None: result.append(Y[pos-1]) next_pos = prev[m][pos] pos = next_pos return list(reversed(result)) # 测试数据 print(lcis([3,4,9,1],[5,3,8,9,10,2,1])) # 输出可能是 [3,9,1] ``` 注意这段代码中的 `prev` 跟踪数组是为了方便最后重建实际的 LCIS 序列。 --- #### 总结 通过动态规划的方法求解最长公共上升子序列问题时,关键是合理设计状态表示并有效利用历史信息完成最优决策。尽管基础版算法存在较高的时间开销,但借助额外存储结构能够显著提升效率至可接受范围之内。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值